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ABSTRACT

The quality of polarimetric radar rainfall estimation is investigated for a broad range of distances from
the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D). The results of
polarimetric echo classification have been integrated into the study to investigate the performance of radar
rainfall estimation contingent on hydrometeor type. A new method for rainfall estimation that capitalizes
on the results of polarimetric echo classification (EC method) is suggested. According to the EC method,
polarimetric rainfall relations are utilized if the radar resolution volume is filled with rain (or rain and hail),
and multiple R(Z ) relations are used for different types of frozen hydrometeors. The intercept parameters
in the R(Z ) relations for each class are determined empirically from comparisons with gauges. It is shown
that the EC method exhibits better performance than the conventional WSR-88D algorithm with a reduc-
tion by a factor of 1.5–2 in the rms error of 1-h rainfall estimates up to distances of 150 km from the radar.

1. Introduction

Accurate rainfall estimates are vital for most hydro-
logic applications. The U.S. National Weather Service
(NWS) requires estimates of rainfall at ranges up to 230
km from the radar (WSR-88D Radar Operations Cen-
ter 2001, section 3.7.2.2.1). However, the quality of ra-
dar measurements and rainfall estimates degrades with
distance as a result of beam broadening and the effect
of Earth curvature (e.g., Smith et al. 1996; Sanchez-
Diezma et al. 2000; Ryzhkov 2007). At longer distances
from the radar (typically beyond 100 km at base tilt),
the radar resolution volume is more likely to be filled
with mixed-phase or frozen hydrometeors. The radar
measurements aloft are also very loosely related to
rainfall near the ground as a result of drastic changes in
microphysical properties of precipitation in the vertical
due to sublimation, riming, aggregation, evaporation,
coalescence, breakup, and advection (e.g., Doviak and
Zrnic 1993, section 8.4).

Contamination from nonliquid hydrometeors is espe-
cially pronounced in colder climates where the melting
layer (or bright band) is particularly low. Even in rela-
tively warm climates, this contamination generally oc-

curs over a significant portion of the required NWS
radar rainfall coverage area. For a typical warm-season
melting level height in central Oklahoma (�3 km
AGL), contamination of radar rainfall estimates at the
0.5° elevation angle due to the presence of mixed-phase
and frozen hydrometeors is usually observed as close as
120 km from the radar. As a result, the accuracy of rain
estimation may be compromised in over two-thirds of
the radar rainfall coverage area required by the NWS.

Several studies discuss the quality of conventional
rainfall estimation with single-polarization radar to
large distances (e.g., Fabry et al. 1992; Smith et al. 1996;
Seo et al. 2000; Krajewski and Ciach 2005). To obtain
accurate surface rainfall measurements at longer dis-
tances, it is necessary to address the impact of melting-
layer and frozen-hydrometeor contamination on radar
measurements. For conventional radars, emphasis has
been on establishing characteristic vertical profiles of
reflectivity (VPR) to account for the reflectivity behav-
ior through regions of melting hydrometeors (e.g.,
Koistinen 1991; Andrieu and Creutin 1995; Kitchen
1997). Although methods capitalizing on the knowl-
edge of the VPR yield improved rainfall estimates at
longer distances, these techniques are sensitive to pre-
cipitation variability, including changes in storm type
(e.g., stratiform vs convective) and temporal/spatial
changes in the VPR (e.g., Zawadzki 2006). In this study,
we suggest an alternate approach that capitalizes on
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polarimetric classification of radar echo rather than
vertical profiles of reflectivity.

Polarimetric radar provides new opportunities to im-
prove the accuracy of rain measurements as numerous
theoretical and validation studies show (e.g., Ryzhkov
and Zrnić 1996; May et al. 1999; Bringi and Chan-
drasekar 2001; Brandes et al. 2002; Matrosov et al.
2005; Ryzhkov et al. 2005b). Polarimetric rainfall esti-
mation techniques are more robust with respect to drop
size distribution (DSD) variations and the presence of
hail than are the conventional R(Z) relations (here, R
is radar rainfall rate and Z is reflectivity). The measure-
ments of specific differential phase KDP, which is im-
mune to radar miscalibration, attenuation, and partial
beam blockage (Zrnić and Ryzhkov 1996), benefit the
quality of precipitation estimation by providing meth-
ods to correct radar reflectivity biases that result from
those listed factors or through the direct estimation of
rainfall using R(KDP) relations. In addition, polarimet-
ric radar is uniquely suited for discriminating among
different classes of meteorological and nonmeteoro-
logical echo (e.g., Zrnić and Ryzhkov 1999; Vivekanan-
dan et al. 1999; Liu and Chandrasekar 2000; Zrnić et al.
2001; Lim et al. 2005), which may also benefit estimates
of rain. The anticipated improvement in quantitative
precipitation estimation is one of the primary motiva-
tions for the forthcoming polarimetric upgrade of the
Weather Surveillance Radar-1988 Doppler (WSR-88D)
network (e.g., Ryzhkov et al. 2005c).

A number of different polarimetric algorithms for
rainfall estimation have been recently validated in an
operational environment during the Joint Polarization
Experiment (JPOLE) field campaign, which was held
in central Oklahoma in 2002–03 (Ryzhkov et al.
2005b,c). In the JPOLE study, it was shown that the
so-called synthetic algorithm, which utilizes different
polarimetric relations depending on the value of Z, out-
performs all other relations at the distances less than 90
km from the radar (Ryzhkov et al. 2005b). The perfor-
mance of the synthetic algorithm (as well as other rain-
fall algorithms) at longer ranges was not investigated in
that study. Preliminary analysis by Giangrande and
Ryzhkov (2003) and Ryzhkov et al. (2005c) demon-
strated statistical improvement in the accuracy of rain
measurements at longer distances (between 100 and
200 km) if the R(KDP) relation is used instead of R(Z).
We are not aware of any other substantial effort to
validate polarimetric rainfall algorithms beyond the
range of 100 km, and the quality of polarimetric rainfall
measurements at longer distances (where the radar
samples mixed-phase and frozen hydrometeors) is
largely unknown. One of the major objectives of this
paper is to examine the performance of polarimetric

algorithms for rain estimation up to the distance of 250
km from the radar using a large dataset collected with
the polarimetric prototype of the WSR-88D radar (re-
ferred to by identifier KOUN herein) and Oklahoma
Mesonet gauge network.

Previous studies indicate that regardless of range in-
terval it is unlikely any single radar relation would pro-
duce high-quality precipitation estimates at different
distances from the radar and for different types of hy-
drometeors filling the radar resolution volume (e.g.,
Jameson 1991; Chandrasekar et al. 1993; Cifelli et al.
2002; Ryzhkov et al. 2005b). According to the Ryzhkov
et al.’s (2005b) synthetic approach, the segregation be-
tween different polarimetric relations is based on radar
reflectivity factor. Following Zrnić (1996), we suggest
using results of polarimetric hydrometeor classification
for such a segregation.

This paper assesses the quality of polarimetric rain-
fall estimation for a broad range of distances from the
radar. The data were collected with the KOUN radar in
central Oklahoma. Polarimetric echo classification has
been integrated into this study to investigate the per-
formance of radar rainfall estimation contingent on the
type of hydrometeors that fill the radar resolution vol-
ume. Hourly Agricultural Research Service (ARS) Mi-
cronet and Oklahoma Mesonet rain gauge accumula-
tions are used to validate conventional and polarimetric
radar rainfall measurements (e.g., Brock et al. 1995;
Shafer et al. 2000). The ARS and Oklahoma Mesonet
gauges used in this study are well calibrated and are
located at distances between 25 and 250 km from the
KOUN radar (e.g., Shafer et al. 2000; Fiebrich et al.
2006; McPherson et al. 2007).

2. Radar dataset, preprocessing, and echo
classification

A total of 43 events observed by the KOUN radar
between 2002 and 2005 have been selected for analysis.
The dataset includes gauge observations from over 100
Oklahoma Mesonet stations and comprises 179 h of
radar data. Concurrent gauge observations were avail-
able from the densely spaced ARS network stations
located at ranges of 50–88 km from the KOUN radar.
The total number of ARS gauges is 42 (24 after 2004
when some gauges were decommissioned), with an av-
erage spacing of about 5 km. Over the ARS network,
comparisons between the performance of radar-based
rainfall retrievals are mainly affected by DSD variabil-
ity and the possible presence of hail rather than ground
clutter or contamination from the melting layer or fro-
zen hydrometeors (e.g., Ryzhkov et al. 2005b). A map
of the observation network in central Oklahoma is pre-
sented in Fig. 1. A complete list of rain events and

2446 J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y VOLUME 47



hours of observation is provided in Table 1. The dataset
includes warm-season convective storms containing
hail, mesoscale convective systems (MCS) with intense
squall lines and trailing stratiform precipitation, wide-
spread cold-season stratiform rain, and select tropical
storm remnants. The Mesonet and ARS gauges
(shielded Met One Instruments, Inc., tipping-bucket
type) used in the study are unheated; therefore we ex-
clude the data associated with frozen and/or mixed-
phase precipitation recorded at gauge level.

Radar reflectivity factor at horizontal polarization Z,
differential reflectivity ZDR, specific differential phase
KDP, and cross-correlation coefficient �HV were mea-
sured at a radial resolution of 0.250–0.267 km using a
short dwell time (48 radar samples) to satisfy Next-
Generation Weather Radar (NEXRAD) antenna rota-
tion rate (3 revolutions per minute) and azimuthal reso-
lution (1°) requirements. Radar rainfall estimates and
echo classification results were obtained using data col-
lected at the 0.5° elevation scan with an update time
varying between 2 and 6 min. Radar reflectivity mea-
sured by KOUN was matched with Z obtained from the
nearby KTLX WSR-88D radar, which was assumed to
be well calibrated based on the results of our previous
studies (e.g., Ryzhkov et al. 2005a; Giangrande and
Ryzhkov 2005). Differential reflectivity ZDR was cali-
brated using polarimetric signatures of dry aggregated
snow above the melting level following Ryzhkov et al.
(2005a). Attenuation correction of Z and ZDR was per-
formed using differential phase �DP and relations �Z
(dB) � 0.04�DP (°) and �ZDR (dB) � 0.004�DP (°)
(Ryzhkov and Zrnić 1995). Two estimates of KDP are
obtained from a filtered �DP as a slope of least squares
fit for two range averaging intervals, corresponding to 9

and 25 successive gates. For any particular gate, the
lightly filtered KDP estimate is selected if Z � 40 dBZ,
and otherwise the heavily filtered KDP is selected
(Ryzhkov and Zrnić 1996). A minimum �HV � 0.85
threshold was applied to filter echoes of nonmeteoro-
logical origin. Radar reflectivity was capped at 53 dBZ
to mitigate hail contamination. Additional details of
data processing can be found in Ryzhkov et al. (2005c).

In this study we compare hourly gauge and radar
rainfall accumulations over gauge locations within 250
km of KOUN. Hourly radar accumulations are defined
as an hourly rainfall estimate averaged over an area
centered on an individual gauge. Radar rain rates are
averaged using five gates centered over the gauge lo-
cation and two closest azimuths separated by 1°. Such
averaging produces a radial resolution of 1.0 km and
transverse resolution that varies with range.

To establish the quality of the conventional and po-
larimetric radar rainfall algorithms, absolute differ-
ences between radar and gauge estimates (expressed in
millimeters) are examined rather than standard frac-
tional errors, which are heavily weighted toward small
accumulations. Rainfall estimates are characterized by
the bias B � ��� and the rms error RMSE � �|�|2�1/2,
where � � TR 	 TG is the difference between radar and
gauge hourly totals for any given radar–gauge pair and
angle brackets imply averaging over all such pairs.

When comparing radar and gauge rain estimates, one
must be mindful of the errors of tipping-bucket gauge
measurements (e.g., Zawadzki 1975; Wilson and
Brandes 1979; Austin 1987; Ciach 2003). The errors in
gauge accumulations associated with high-wind under-
catch and splashing may exceed 12% for intense MCS
events in central Oklahoma (Duchon and Essenberg

FIG. 1. Map of the observation network in central Oklahoma.
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2001). These errors are not common and/or typically
have a lesser impact on the hourly rain total. Quality-
assurance meteorologists at the Oklahoma Mesonet
perform regular gauge maintenance and event-based
analysis to detect and remove accumulation reports
from malfunctioning and apparently biased gauges.
Thus, we believe that the intrinsic gauge errors in the
hourly rain total are well below the expected errors of
radar rainfall measurements.

An objective of this study is to examine the quality of
radar rain measurements as a function of radar echo
type and to explore the value of polarimetric hydrome-
teor classification for quantitative precipitation estima-
tion. For this purpose, the type of scatterers in the radar
sampling volume corresponding to a particular gauge
location was identified using a polarimetric classifica-
tion algorithm based on fuzzy-logic principles. The clas-
sification algorithm utilized herein is close to the one
described by Ryzhkov et al. (2007) and Park et al.
(2007). The membership functions in the fuzzy-logic
scheme are consistent with those in the literature (e.g.,
Liu and Chandrasekar 2000; Lim et al. 2005). The clas-
sifier distinguishes among 10 classes of radar echo, in-
cluding anomalous propagation and ground clutter
(AP/GC), biological scatterers (BS), light to moderate
rain (RA), heavy rain (HR), rain–hail (RH), big drops
(BD), graupel (GR), wet snow (WS), dry snow (DS),
and ice crystals (CR). The classification algorithm in
this study utilizes four radar variables: Z, ZDR, �HV, and
a texture parameter SD(Z), that is, the standard devia-
tion of small-scale fluctuations of Z along a radial;
SD(Z) is primarily used to distinguish between meteo-
rological and nonmeteorological echo.

In addition to radar variables, the fuzzy-logic algo-
rithm also utilizes information about the vertical tem-
perature profile or melting-layer depth for better de-
lineation of the areas of liquid, mixed-phase, and frozen
hydrometeors. The parameters of the melting layer can
be determined from soundings, numerical model out-
put, or polarimetric radar data themselves (e.g., Gian-
grande et al. 2008). When performing echo classifica-
tion at grazing angles, it is necessary to consider the
impact of beam broadening for proper echo designation
relative to melting-layer boundaries. Here, we define
the minimal slant range for which the entire radar reso-
lution volume is above the freezing level as Rt. In a
similar way, the maximal slant range at which the entire
radar resolution volume is located below the bottom of
the melting layer is defined as Rb. Different class des-
ignations are allowed depending on the slant range at a
given elevation (Ryzhkov et al. 2007). For example, wet
snow is only allowed between Rb and Rt.

The classification code distinguishes among four
types of rain: RA, HR, RH, and BD. The membership
functions in the fuzzy-logic scheme for four classes of
rain overlap significantly in terms of all four radar vari-
ables and are constructed in such a way that distinction
between RA and HR is primarily based on Z using a
45-dBZ borderline. This corresponds to a rain rate of
approximately 25–30 mm h	1. Rain–hail mixture RH,
on the other hand, is recognized and distinguished from
HR with the same Z by significantly lower values of

TABLE 1. Listing of KOUN events and the hours of observation.

No. Date
Hours
(UTC) Event type

1 14 Aug 2002 1–4 MCS
2 8 Sep 2002 18–21 Tropical remnant
3 9 Sep 2002 16–17 Tropical remnant
4 14 Sep 2002 6–11 MCS
5 19 Sep 2002 2–7 MCS
6 8 Oct 2002 17–20, 22–23 Widespread stratiform

9 Oct 2002 1–3, 4–5, 13–14
7 19 Oct 2002 19–20, 21–22 Widespread stratiform
8 24 Oct 2002 15–17, 19–21 Widespread stratiform
9 28 Oct 2002 19–20 Widespread stratiform

10 3 Dec 2002 22–23 Stratiform/ice northwest
of Oklahoma City

4 Dec 2002 1–3
11 19 Apr 2003 10–14 MCS
12 23 Apr 2003 22–23 Isolated convection
13 14 May 2003 5–11 Severe convective cells
14 16 May 2003 5–10 MCS
15 20 May 2003 1–5 Isolated convection
16 2 Jun 2003 3–6 MCS
17 4 Jun 2003 12–14, 15–17 MCS
18 5 Jun 2003 10–15 MCS
19 6 Jun 2003 2–7 MCS
20 11 Jun 2003 0–1, 2–6 MCS
21 12 Jun 2003 0–5 MCS
22 13 Jun 2003 10–14 Isolated convection
23 24 Apr 2004 2–7 MCS
24 13 May 2004 19–20 MCS
25 2 Jun 2004 20–23 MCS
26 4 Jun 2004 14–20 Isolated convection
27 19 Jun 2004 16–20 MCS
28 21 Jun 2004 8–13 MCS
29 22 Jun 2004 8–12 MCS
30 28 Aug 2004 8–12 MCS
31 14 Nov 2004 20–23 Widespread stratiform
32 15 Nov 2004 10–14 Widespread stratiform
33 13 May 2005 6–10 MCS
34 27 May 2005 15–18 Isolated convection
35 5 Jun 2005 1–5 MCS
36 10 Jun 2005 7–11 MCS
37 17 Jun 2005 4–7 MCS
38 1 Jul 2005 14–17 MCS
39 27 Aug 2005 18–22 Isolated convection
40 29 Aug 2005 3–6 Isolated convection
41 14 Sep 2005 3–6 MCS
42 1 Oct 2005 2–18 MCS
43 5 Oct 2005 21–23 MCS

6 Oct 2005 0–3, 4–6
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ZDR and �HV. Rain associated with significant presence
of big drops and/or a relative deficit of small drops is
usually characterized by anomalously high ZDR (for a
given Z) and is identified as BD in the echo classifier.
Rain belonging to the BD category is commonly ob-
served in the updraft areas of the storms where vigor-
ous size sorting of raindrops occurs; BD designations
may also be found beneath mature bright bands asso-
ciated with the melting of large snowflakes in the strati-
form regions of an MCS.

Table 2 and Fig. 2 summarize results of echo classi-
fication at Oklahoma Mesonet gauge locations up to
250 km from the KOUN radar for the entire dataset
containing 43 rain events and 179 h of observation. On
average, a radar echo over a particular gauge was
strong enough to be classified during 30% of the ob-
servation period.

The second column in Table 2 shows the percentage
of occurrence for different echo types at elevation 0.5°
in the 250-km radius area for the whole dataset. These
data indicate that about 53% of radar echoes observed
at the lowest elevation scan are associated with liquid
hydrometeors and/or rain mixed with hail and that wet
snow or frozen particles are responsible for 23% of
these echoes. Classification performed over the ARS
gauges at the lowest elevation angle shows an absence
of frozen and mixed-phase echo for the events in the
dataset.

For the classifications over Oklahoma Mesonet
gauge locations, the RA category is the dominant echo
type and is classified to the distances of 170 km. Al-
though convective rain categories including heavy rain,
big drops, and rain–hail only account for approximately
10% of the valid classifications, their contribution to
total rain amount exceeds 40% [if estimated from the
standard WSR-88D R(Z) relation] because of higher
rain rates. Echoes related to frozen and mixed-phase
hydrometeors are typically observed at distances be-

yond 100 km. Wet snow is a prevalent category among
nonrain class designations owing to several MCSs with
trailing stratiform precipitation in the dataset.

Echo classification is performed over each gauge lo-
cation during every radar scan, whereas radar and
gauge rainfall accumulations are computed for each
hour. Because classification results generally change
from scan to scan at the same location, several class
designations may be associated with a single hourly rain
total. To quantify the accuracy of hourly rainfall esti-
mation for individual echo classes, we prefer to assign
the hourly rain total to a single, dominant echo class for
that hour. For example, a particular hourly gauge ac-
cumulation is associated with RA if the corresponding
radar echo is classified as RA for at least 70% of radar
scans constituting this hour. We refer to this type of
echo as rain type I. The gauge hours that do not meet
this requirement are removed from the statistics.

FIG. 2. Histogram of ranges associated with different classes of
hydrometeors observed at the 0.5° elevation.

TABLE 2. The results of echo classification for the Oklahoma Mesonet dataset. Percentages exclude nonecho/null classifications. The
�R� and �ZDR� are mean values of rainfall rate (Z capped at 53 dBZ ) and differential reflectivity over gauge locations for the
corresponding echo class. The standard NEXRAD R(Z ) relation (1) is used to estimate the relative contribution to the total radar-
estimated rain depth in the far-right column.

Echo category No. obs Occurrence (%) �R� capped (mm h	1) �ZDR� (dB) Contribution to R(Z ) rainfall (%)

GC/AP 7736 9.79 2.88 0.62 5.94
Biological 11 577 14.66 0.34 2.89 0.89
Dry snow 4560 5.78 1.51 0.48 1.59
Crystals 1251 1.58 0.50 0.81 0.14
Wet snow 9443 11.96 5.03 1.10 10.75
Graupel 2695 3.41 14.41 0.60 8.93
Rain 34 016 43.08 3.68 0.83 28.9
Big drops 4989 6.31 3.93 1.66 4.48
Heavy rain 2224 2.82 58.58 2.11 29.7
Rain–hail 460 0.58 82.33 1.15 8.65
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Other categories of rain (BD, HR, RH) are relatively
infrequent (see Fig. 2 and Table 2), and the number of
hours and gauges over which such signatures are dom-
inant is too small for obtaining reliable statistics. For
this reason, we combine these rain categories in a single
class of rain called rain type II. An hourly gauge total is
associated with rain type II if any of RA, BD, HR, or
RH (or some or all of them together) are detected for
at least 70% of the time and one of the three categories
BD, HR, or RH is identified for no less than 20% of the
time.

3. Rainfall estimates associated with different echo
types

The performance of different rainfall relations is in-
vestigated, contingent on the results of polarimetric
echo classification. It is known that conventional radar
rainfall estimates obtained from R(Z) relations dete-
riorate in the presence of mixed-phase and frozen hy-
drometeors. Previous studies have shown that the R(Z,
ZDR) relation is less prone to DSD variability, but it is
not immune to hail contamination and is not efficient in
situations of melting-layer contamination and precipi-
tation overshooting (e.g., Aydin et al. 1990; Ryzhkov
and Zrnić 1995; Brandes et al. 2002; Ryzhkov et al.
2005b,c). Rainfall algorithms based on KDP are more
robust in the presence of hail but are not optimal for
light rain at S band (e.g., Chandrasekar et al. 1990;
Ryzhkov and Zrnić 1995). Giangrande and Ryzhkov
(2003) demonstrate that R(KDP) outperforms R(Z) in
melting-layer regions, but the improvement may be for-
tuitous and requires further clarification. The results of
polarimetric echo classification can be utilized to fur-
ther investigate the nature of the errors inherent to all
three types of rainfall relations [R(Z), R(Z, ZDR), and
R(KDP)] depending on the type of radar echo. We ex-
amine the performance of different rainfall relations
separately in rain below the melting layer, within the
melting layer where wet snowflakes are the dominant
scatterers, and in frozen hydrometeors including grau-
pel, hail, dry snow, and crystals above the melting layer
where the direct application of radar rainfall relations is
questionable.

a. Rainfall relation comparisons in rain

Rain is most often classified at relatively close dis-
tances from the radar. For this reason, both Oklahoma
Mesonet and ARS Micronet gauge network accumula-
tions are available to validate radar rainfall algorithms
in rain. In this study, the following R(Z), R(KDP), and
R(Z, ZDR) relations have been selected for analysis:

R
Z � � 
1.7 � 10	2�Z0.714, 
1�

R
KDP� � 44.0|KDP|0.822 sign
KDP�, and 
2�

R
Z, ZDR� � 
1.42 � 10	2�Z0.770Zdr
	1.67. 
3�

The conventional R(Z) relation in (1) is the inversion
of the standard NEXRAD formula Z � 300R1.4, where
Z is expressed in millimeters to the sixth power per
meter cubed and R is in millimeters per hour. In (2),
KDP is expressed in degrees per kilometer and the
sign(KDP) term allows negative values of R (e.g., Ryzh-
kov and Zrnić 1996). Lowercase subscript in Zdr in (3)
indicates linear units as opposed to uppercase subscript,
which denotes logarithmic scale. Polarimetric relations
(2) and (3) are selected because of their optimum per-
formance in rain for central Oklahoma during the
JPOLE field campaign (e.g., Ryzhkov et al. 2005b).

Scatterplots of hourly rainfall totals obtained from
the radar relations (1)–(3) versus hourly gauge accumu-
lations are displayed in Figs. 3–6. Figures 3 and 4 illus-
trate radar–gauge comparisons using Oklahoma Meso-
net and ARS gauges if rain is classified as rain type I as
specified in section 2. Similar plots highlighting the per-
formance of the three rainfall relations for more con-
vective and/or heavier rain type II (as specified in the
previous section) are provided in Figs. 5 and 6 for the
same gauge networks.

For rain type I, the tested relations show similar per-
formance with respect to both gauge networks. A mod-
est improvement in the rms errors is observed for all
three rainfall relations if the ARS network is utilized
for validation. This may be attributed to the improved
spatial resolution of the KOUN radar measurements
over these gauges (all 42 ARS gauges are located to
within 88 km, as compared with 20 Oklahoma Mesonet
gauges). As Figs. 3 and 4 show, the R(Z, ZDR) relation
is relatively unbiased and has the lowest rms errors over
both networks, consistent with the Brandes et al. (2002)
findings. The improvement yielded by the R(Z, ZDR) is
relatively modest for rain type I and is more pro-
nounced over the ARS network (Fig. 4c).

There is a clear benefit in polarimetric rainfall esti-
mation in rain type II. The sizable reduction in bias and
rms error (as compared with rain type I) for the R(Z,
ZDR) and R(KDP) relations is an indication that these
relations are less susceptible to hail contamination and
DSD variability. The conventional R(Z) relation sig-
nificantly overestimates rain type II even though radar
reflectivity is capped at the 53-dBZ level to mitigate
hail contamination. This overestimation is attributed to
large raindrops and/or melting hailstones, which are
typical for convective storms during the warm season in
Oklahoma (e.g., Ryzhkov et al. 2005b). High values of
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FIG. 3. Hourly radar–gauge rainfall accumulation scatterplots
for rain type I over Oklahoma Mesonet gauge locations: (a) R(Z ),
(b) R(KDP), and (c) R(Z, ZDR).

FIG. 4. As in Fig 3, but over ARS network gauge locations.
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FIG. 5. As in Fig. 3, but for rain type II. FIG. 6. As in Fig. 4, but for rain type II.
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Z in the R(Z, ZDR) relation from (3) are offset by large
intrinsic ZDR for big drops and/or small melting hail.

The performance of the R(KDP) and R(Z, ZDR) re-
lations for rain type II is comparable, and network-
relative performance is similar to the case of rain type
I (Figs. 3, 4). At closer distances from the radar where
the radar estimates are validated against ARS rain
gauges (Figs. 6b,c), the R(KDP) relation yields slightly
higher bias and rms error relative to R(Z, ZDR). The
opposite is true in the broader range of distances where
validation is performed using Oklahoma Mesonet
gauges (Figs. 5b,c). The KDP measurements are already
heavily filtered in range, which may explain why these
measurements are less sensitive to the additional beam
broadening/filling effects in rain over mesonet gauges.

The choice between R(KDP) and R(Z, ZDR) in rain
type II is affected by the quality of absolute calibration
of Z and ZDR, severity of the nonuniform beam filling
(NBF) effects, and required spatial resolution of rain
estimates. For example, the R(Z, ZDR) relation cannot
be applied in rain–hail mixtures if the increase in Z is
not compensated by the proportional increase of ZDR

in (3). One has to distinguish between situations in
which rain is mixed with relatively small melting hail
having high ZDR and large hail characterized by low
ZDR. According to our classification algorithm, only the
latter situation is qualified as hail–rain mixture. This is
confirmed by the difference in the 2° � 1 km average
values of R(Z) and ZDR for heavy rain and rain–hail in
Table 2. In the rain–hail mixture, higher Z is associated
with lower ZDR and the R(KDP) relation produces
smaller bias.

Specific differential phase is immune to radar mis-
calibration and attenuation in rain, making R(KDP) al-
gorithms an attractive choice for rainfall estimation.
However, because estimates of KDP are noisier and
more prone to NBF, the fields of R(KDP) and even
corresponding hourly totals may contain spurious per-
turbations and “holes” associated with unphysical nega-
tive rain rates or accumulations. An example of these
holes in a rainfall accumulation display is presented in
Fig. 7a. The reflectivity-based relation generally pro-
duces less noisy, “hole free” fields of rain totals and
may be favorable for operational forecast/warning ap-
plications, which require high spatial and temporal
resolution (Fig. 7b). The R(KDP) relation may be pre-
ferred in hydrological applications, which need unbi-
ased estimates of rain integrated over a large spatial/
temporal domain.

b. Rainfall relation comparisons in wet snow

Wet Snow echoes are associated with (but not limited
to) locations of pronounced brightband signatures in Z.

Wet snow is identified with greater confidence if Z is
supplemented with polarimetric variables ZDR and �HV.
For the KOUN radar, wet snow echoes are best char-
acterized by values of �HV between 0.90 and 0.97 and
ZDR values exceeding 0.7 dB.

The comparison between hourly rain totals obtained
from (1)–(3) and Oklahoma Mesonet gauges in the
cases in which the radar samples wet snow above the
gauges is illustrated in Fig. 8. Again, an hourly rain total
is associated with wet snow if the radar echo is classified
as wet snow for at least 70% of the scans within the
hour. Note that dry snow or RA radar echo, the echo
classes that typically straddle the melting layer with
height, may make up the remaining minority of the
scans. At elevation 0.5°, wet snow in the radar resolu-

FIG. 7. An example of hourly rain accumulation maps obtained
using an (a) R(KDP) relation and (b) R(Z ) relation.
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tion volume is usually classified at distances beyond 80
km from the radar and beyond the ARS Micronet
gauge network (Fig. 1). Thus, ARS network accumula-
tions cannot be used for validation in the case of wet
snow echoes.

The use of a single R(Z) rainfall relation through
rain, mixed-phase, and snow regions is a common prac-
tice in conventional NEXRAD operations. However,
no reasonable expectation exists that a single relation
developed for the rain medium would be applicable to
longer distances and through mixed-phase regions. As
Fig. 8a shows, the conventional R(Z) relation applied
over wet snow echo gauges significantly overestimates
surface rainfall. Slight improvement in terms of the bias
and rms error is observed if polarimetric relations are
used (Figs. 8b,c). Such an improvement may be ex-

plained by the fact that KDP is less affected by the con-
tribution from large wet snowflakes than is Z. Also,
because ZDR is high in wet snow, the combined use of
Z and ZDR helps to partially mitigate the overestima-
tion inherent to R(Z). However, the peaks in the ver-
tical profiles of Z and ZDR through the bright band
generally do not coincide in height and Z and ZDR do
not correlate to the extent typical for ordinary rain. In
addition, both KDP and ZDR are very prone to the NBF
effects in the presence of very strong vertical gradients
in the melting layer (Ryzhkov 2007) and are noisy be-
cause of low �HV. Thus, the use of (2)–(3) in wet snow
is not as beneficial as in rain, and additional study is
required to determine the usefulness of these relations.

In view of these considerations, we recommend using
a modified R(Z) relation, as opposed to polarimetric

FIG. 8. Hourly radar–gauge rainfall accumulation scatterplots for wet snow over Oklahoma Mesonet gauges: (a)
R(Z ), (b) R(KDP), (c) R(Z, ZDR), and (d) 0.6R(Z ) that minimizes bias.
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relations, if the radar echo is classified as wet snow.
Such a modification implies multiplying the right side of
(1) by a factor that can be determined empirically by
minimizing the bias and rms error in the rain estimate.
In the case of wet snow for this dataset, this factor was
determined to be 0.6; that is, the relation R � 0.6R(Z)
works the best (Fig. 8d).

c. Conventional-relation performance above the
melting layer

The echo classification routine used in this study clas-
sifies four hydrometeor species above the melting layer:
dry snow, crystals, graupel, big drops, and rain–hail.
Dry snow and crystals encompass most polarimetric
echo designations exhibiting low Z (generally less than

35 dBZ) and �HV greater than 0.97. Discrimination be-
tween dry snow and crystals is primarily based on the
magnitudes of Z and ZDR. Discrimination between
graupel and rain–hail above the melting layer is primar-
ily based on the magnitudes of Z and �HV. Big drops
encompass most of the remaining liquid precipitation in
updraft regions with �HV greater than 0.97.

As illustrated by a polarimetric radar cross section
through a typical Oklahoma thunderstorm (Fig. 9), the
two polarimetric variables KDP and ZDR measured
above the melting layer are noisy, are often negative,
and seem loosely connected with rain on the ground.
Although microphysical processes in the frozen part of
the cloud directly impact rain formation and polarimet-
ric measurements undoubtedly provide insight into the
nature of such processes and snow type, the quantita-

FIG. 9. Vertical cross section of R(Z ), ZDR, R(KDP), and �HV through a thunderstorm, illustrating the loose connection between
R(KDP) and ZDR aloft and rain at the surface.
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tive use of the polarimetric variables measured above
the melting layer for precipitation estimation on the
ground has not yet been justified. At the moment, the
use of modified R(Z) relations may be the most rea-
sonable option provided that the type of the radar echo
above the melting layer is determined using a polari-
metric classification algorithm.

Figure 10a shows that the conventional relation (1)
heavily underestimated rain at the surface if the hydro-
meteors in the radar resolution volume were identified
as dry snow and crystals. Note that the classification
routine allows for dry snow to be designated if part of
the radar volume is below the freezing level. The errors
are smaller at closer distances where the height of the
radar resolution volume is at or below the freezing level
(Fig. 10b). The Z measurements in these regions often
closely resemble those in the rain beneath (e.g., Fabry
and Zawadzki 1995). As the height of radar echo pro-
gressively increases with distance, rain underestimation
becomes overwhelming (Fig. 10c).

To minimize the bias in the estimate of rain when dry
snow/crystals are sampled by the radar at longer dis-
tances, we introduce an additional factor of 2.8 to con-
ventional R(Z) relation (1):

R
Z� � 2.8R
Z� � 
4.76 � 10	2�Z0.714. 
4�

The intercept in (4) is between the intercepts of the
Z–S relations recommended by Super and Holroyd
(1998):

S � 
3.86 � 10	2�Z0.5, 
5�

and by Vasiloff (2001):

S � 
5.46 � 10	2�Z0.5, 
6�

for estimating snow water equivalent rate S on the op-
erational NEXRAD network if snow near the surface is
dry.

The performance of the conventional R(Z) relation
for a limited subset of cases in which the radar echo was
classified as graupel/hail above the freezing level is il-

lustrated in Fig. 11. Because KDP and ZDR are usually
small for dry graupel and hail aloft, it is hard to expect
rainfall estimation improvement if these two polarimet-
ric variables are used directly. Instead, we recommend
using the modified R(Z) relation for graupel/hail aloft
with the multiplying factor 0.8, which minimizes the
bias and rms error for this data subset.

4. Radar algorithms and their performance as a
function of range

As shown in section 3, there is benefit in the use of
different rainfall relations for different classes of radar
echo. The idea of using multiple relations to optimize
rainfall estimation as suggested by Chandrasekar et al.
(1993), Cifelli et al. (2002), and Matrosov et al. (2005)
was further explored by Ryzhkov et al. (2005b) in
JPOLE studies. According to the “synthetic algorithm”
developed by Ryzhkov et al. (2005b), the choice be-
tween various polarimetric rainfall relations is deter-
mined solely by the radar reflectivity Z or R(Z) [i.e.,
rain rate computed from Z using (1)]. Ryzhkov et al.
(2005b) recommend using the R(Z, ZDR) relation in
light rain [R(Z)  6 mm h	1], the R(KDP, ZDR) relation
in moderate-to-heavy rain [6  R(Z)  50 mm h	1],
and the R(KDP) relation in heavy rain [R(Z) � 50 mm
h	1]. The three relations were optimized based on the
comparison with the ARS gauges for rain events during
JPOLE in 2002–03. In Ryzhkov et al. (2005b), the syn-
thetic algorithm was validated only at distances of less
than 90 km from the radar, where the contamination
from mixed-phase and frozen hydrometeors is minimal.
Note that the R(Z, ZDR) relation in the synthetic algo-
rithm is different from the one given by (3). The R(Z,
ZDR) relation in Ryzhkov et al. (2005b) was optimized
for light rain where R(Z)  6 mm h	1.

In this study, we use the approach of the synthetic
algorithm using polarimetric classification rather than
Z-based approaches, and it is applicable for a wide
range of distances from the radar. This algorithm is
constructed as follows:

R � 0 if nonmeteorological echo is classified,

R � R
Z, ZDR� if light�moderate rain is classified,

R � R
Z, ZDR� if heavy rain or big drops are classified,

R � R
KDP� if rain–hail is classified and range � Rt ,

R � 0.6R
Z� if wet snow is classified,

R � 0.8R
Z� if graupel or rain–hail is classified and range � Rt ,

R � R
Z� if dry snow is classified and range � Rt , and

R � 2.8R
Z� if dry snow or crystals are classified and range � Rt , 
7�
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where the R(Z), R(Z, ZDR), and R(KDP) relations are
specified by (1)–(3) above, Rt is as specified in section
2, Z values are capped at 53 dBZ, and rain rate is set to
zero if �HV  0.85 to ensure minimal contamination
from nonmeteorological echoes. The set of equations in
(7) composes an echo classification (EC) rainfall esti-
mation algorithm. In the current version of the EC al-
gorithm, we use two very different R(Z) relations for
dry snow below and above the freezing level. In the
future, a more gradual change of the intercept param-
eter in the R(Z) relation for dry snow/crystals as a func-
tion of range (or radar volume height) might be
needed, similar to what was suggested by Hunter et al.
(2001) for the WSR-88D snow accumulation algorithm
or what is usually employed in the conventional VPR
methods. This algorithm was tested on the entire
dataset along with the individual relations (1)–(3) and
the synthetic algorithm by Ryzhkov et al. (2005b).

The mean biases and RMS errors for five algorithms
are plotted as functions of range for the entire dataset
in Fig. 12. The distances from gauges have been parti-
tioned into 50-km-wide range bins to smooth the plot-
ting. Because of significant radar rainfall accumulations
associated with intense convective lines (MCS) and
hail-producing storms, convective warm-season events
dominate the overall performance statistics in Fig. 12.
Separate statistics were obtained for widespread
“stratiform” rain events that we define as the events
with an absence of convective signatures and for which
the bright band played a significant role (Fig. 13). This
subset includes 26 h of Oklahoma Mesonet gauge ob-

FIG. 10. Performance of the conventional algorithm for dry
snow and crystals: (a) radar–gauge accumulation comparisons for
all gauges, (b) comparisons for gauges at/below the geometric
projection of the input melting level, and (c) comparisons at dis-
tances above the melting level.

FIG. 11. Performance of the conventional R(Z ) algorithm if the
radar volume is filled with graupel or hail and is located above the
freezing level.
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servations during nine widespread cold-season precipi-
tation events.

As was claimed by Ryzhkov et al. (2005c) and Gian-
grande and Ryzhkov (2003), the conventional WSR-
88D algorithm tends to overestimate rainfall in a wide
range of distances up to 200 km from the radar and
underestimate it beyond 200 km because of the pro-
gressive overshooting of precipitation at longer ranges
(Figs. 12, 13). The overestimation at ranges below 100
km is likely due to the impact of large drops and melt-
ing hail, which are very common in Oklahoma storms
(Ryzhkov et al. 2005b). At ranges between 100 and 200
km, contamination from the bright band is another fac-
tor contributing to the positive bias of the conventional
rainfall estimate. Depending on the height of the freez-
ing level, the impact of the bright band is strongest in

the range interval of 130–180 km. Conclusions regard-
ing the performance of the conventional WSR-88D
R(Z) relation in this paper are consistent with the re-
sults of independent statistical study by Krajewski and
Ciach (2005), who examined a massive amount of radar
data collected by the operational KTLX WSR-88D ra-
dar in the same region (i.e., central Oklahoma).

The performance of rainfall relations at close dis-
tances from the radar (100 km) reaffirms initial
JPOLE findings, which suggest that polarimetric meth-
ods and synthetic algorithms in particular outperform
the conventional R(Z) relation for most precipitation
regimes. Three polarimetric algorithms, the Ryzhkov et
al. (2005b) synthetic, EC-based, and R(KDP), demon-
strate similar performances at the ranges up to 130 km,
with the EC algorithm producing the lowest bias and

FIG. 12. (top) Mean bias and (bottom) RMS error of different
radar estimates as a function of range (43 rain events, 179 h of
observation).

FIG. 13. As in Fig. 12, but for stratiform events with an absence
of convective signatures (9 rain events, 26 h of observation).
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the synthetic one yielding the smallest rms errors for all
rain events combined (Fig. 12).

The EC algorithm significantly outperforms others in
the range interval between 130 and 200 km in terms of
the rms error. However, this result is not necessarily
surprising because the tuned R(Z) relations in mixed-
phase and frozen hydrometeors in the proposed EC
method (7) were developed by minimizing the bias and
rms errors using subsets associated with different hy-
drometeor classes within the same multiyear dataset.
Although our 4-yr dataset is large and encompasses a
variety of different storms, independent testing and
validation of the method in different climate regions is
required to check stability of the suggested R(Z) rela-
tions for nonrain hydrometeors. However, there is little
chance to find a single R(Z) relation that will perform
satisfactorily for all classes of mixed-phase and frozen
hydrometeors. Polarimetric classification combined
with the use of multiple R(Z) relations provides a bet-
ter opportunity to reduce uncertainty in rainfall mea-
surements in a wide range of distances from the radar.

Utilizing the classification-based polarimetric algo-
rithm (EC) instead of the conventional R(Z) relation
results in a reduction of the bias and rms errors of
hourly rainfall estimates up to 200 km from the radar
(Figs. 12, 13). At distances within 50 km, the rms error
is reduced by roughly a factor of 2, largely attributed to
improved polarimetric performance in the presence of
heavy rain and convective echo. This result echoes find-
ings by Ryzhkov et al. (2005b), who reported a reduc-
tion by a factor of 1.7 for the cases observed in central
Oklahoma during JPOLE. The improvement gradually
phases out with increasing distance from the radar.
The degree of the rms error reduction exceeds 50%
at ranges up to 140–150 km and drops to about 20% at
200 km.

For the cold-season, nonconvective events, the EC
algorithm also outperforms the conventional one, but
to a lesser degree. Polarimetric methods capitalizing on
the combined use of Z and ZDR offer only modest im-
provement at close ranges. The most tangible improve-
ment is achieved at longer distances from the radar
where the impact of the bright band is maximal (Fig.
13).

While utilizing hydrometeor classification apparently
improves the quality of rainfall estimation as compared
with the stand-alone conventional relation R(Z), one
has to be aware of certain limitations of the suggested
method. The errors in hydrometeor classification may
introduce additional uncertainties and biases in rainfall
estimation. Several important issues of class identifica-
tion have to be addressed in future studies. Here we

illustrate the complexity of the problem with two ex-
amples.

What is the appropriate class designation from the
standpoint of rainfall estimation if the radar resolution
volume is filled with hydrometeors of two different
types? A dual-polarization radar easily detects bright-
band contamination when wet snow and rain coexist
within the radar volume. Because wet snow exhibits a
strong polarimetric signature, the classification algo-
rithm may qualify the dominant scatterers in the vol-
ume as “wet snow” even if wet snow constitutes only a
relatively small proportion of the scatterers. In such a
situation, the use of the conventional R(Z) relation for
pure raindrops may be more appropriate than the wet-
snow relation because Z is generally less sensitive to
melting hydrometeors than are ZDR or �HV.

The impact of a wrong classification on rainfall esti-
mation at longer distances from the radar is less dra-
matic if “fudge factors” in the modified R(Z) relations
for different classes of hydrometeors do not differ
much. In the case of dry snow/crystals, this multiplica-
tive factor changes abruptly from 1.0 to 2.8 at the dis-
tance Rt according to (7). A more gradual transition will
be implemented in a next version of the algorithm simi-
lar to what Hunter et al. (2001) suggested with respect
to the WSR-88D snow accumulation algorithm.

The EC algorithm is designed to use specific differ-
ential phase KDP more sparingly than is the synthetic
algorithm, which implies more aggressive use of KDP.
This is dictated by the need to mitigate noisiness in rain
fields and the appearance of negative accumulations
related to noisy and negative KDP. However, in some
instances the KDP-based algorithms may produce less
bias if substantial averaging over time and space is per-
formed. For example, the synthetic algorithm shows
slightly smaller bias at shorter distances than the EC
algorithm. Nevertheless, we believe that the overall
performance of the EC algorithm is satisfactory and
that the approach is well suited for implementation on
the polarimetric NEXRAD. An advantage of the EC-
based method is that it can be adapted to incorporate
the ideas of traditional VPR correction, which will ben-
efit from polarimetric classification.

5. Summary

The performance of the conventional and various po-
larimetric algorithms for rainfall estimation has been
validated at a wide range of distances from the radar.
This was accomplished using a large dataset that in-
cluded radar data collected with polarimetric prototype
of the WSR-88D radar and gauge data from the ARS
Micronet and Oklahoma Mesonet networks in Oklaho-
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ma. The type of radar echo in the radar resolution vol-
ume over gauge locations was identified using the po-
larimetric classification algorithm. The accuracy of
rainfall estimation was assessed separately for different
classes of radar echo, including liquid, mixed-phase,
and frozen hydrometeors.

A new algorithm that utilizes multiple polarimetric
relations and modified R(Z) relations depending on a
radar echo class has been developed. According to this
strategy, quantitative precipitation estimation should
be preceded by and contingent on results of hydrome-
teor classification. The R(Z, ZDR) relation is utilized if
the radar echo is classified as rain, and the R(KDP)
relation is used if large hail is mixed with rain. At longer
distances, where the radar resolution volume is filled
with mixed-phase and frozen hydrometeors, the pola-
rimetric radar is primarily used as a classifier. The R(Z)
relations with additional multiplicative factors (or in-
tercept parameters) are applied if the radar scatterers
are identified as wet snow, dry snow, or crystals, as well
as graupel and hail above the melting layer. These fac-
tors were optimized for our dataset, and further testing
of the method using independent data in different cli-
mate regions will be needed to assess their variability.
We do not exclude that in the future the R(Z) relations
should be modified according to the height of the radar
resolution volume above ground or melting layer simi-
lar to the approach recommended by Hunter et al.
(2001) for improvements of the WSR-88D snow accu-
mulation algorithm.

A validation study that incorporates a 4-yr polarimet-
ric dataset containing 43 rain events and 179 h of ob-
servations demonstrates that the performance of the
suggested algorithm, which is based on echo classifica-
tion (EC algorithm), is superior in terms of both bias
and rms error. The most significant improvement, as
compared with the conventional WSR-88D algorithm,
is found in convective storms where the rms error of the
hourly rain estimate is reduced by a factor of 2 at dis-
tances of less than 50 km from the radar.

The degree of improvement for all relations gradu-
ally decreases with range and becomes insignificant at
distances beyond 200 km. It is shown that the EC
method exhibits better performance than the conven-
tional WSR-88D algorithm with a reduction by a factor
of 1.5–2 in the rms error of 1-h rainfall estimates up to
distances of 150 km from the radar. In regions with
brightband contamination, the rms error for the EC
method is reduced by a factor of 1.25 as compared with
the conventional method. Only modest improvement in
rms error is observed relative to the conventional rela-
tion in snow above the melting layer.

As opposed to the synthetic algorithm suggested by

Ryzhkov et al. (2005b), the EC algorithm uses specific
differential phase KDP sparingly. This was done to
avoid noisiness inherent to most of the KDP-based al-
gorithms.
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