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ABSTRACT

This study describes, illustrates, and validates hail detection by a simplified version of the National Severe
Storms Laboratory’s fuzzy logic polarimetric hydrometeor classification algorithm (HCA). The HCA uses
four radar variables: reflectivity, differential reflectivity, cross-correlation coefficient, and “reflectivity tex-
ture” to classify echoes as rain mixed with hail, ground clutter–anomalous propagation, biological scatterers
(insects, birds, and bats), big drops, light rain, moderate rain, and heavy rain. Diagnostic capabilities of
HCA, such as detection of hail, are illustrated for a variety of storm environments using polarimetric radar
data collected mostly during the Joint Polarimetric Experiment (JPOLE; 28 April–13 June 2003). Hail
classification with the HCA is validated using 47 rain and hail reports collected by storm-intercept teams
during JPOLE. For comparison purposes, probability of hail output from the Next-Generation Weather
Radar Hail Detection Algorithm (HDA) is validated using the same ground truth. The anticipated pola-
rimetric upgrade of the Weather Surveillance Radar-1988 Doppler network drives this direct comparison of
performance. For the four examined cases, contingency table statistics show that the HCA outperforms the
HDA. The superior performance of the HCA results primary from the algorithm’s lack of false alarms
compared to the HDA. Statistical significance testing via bootstrapping indicates that differences in the
probability of detection and critical success index between the algorithms are statistically significant at the
95% confidence level, whereas differences in the false alarm rate and Heidke skill score are statistically
significant at the 90% confidence level.

1. Introduction

Over the past 45 yr, numerous studies have explored
the relationships between the conventional (i.e., sin-
gle polarization) radar reflectivity factor (hereafter re-
flectivity) and hail occurrence at the ground. These
studies usually employ radar reflectivity data only (e.g.,
Donaldson 1959; Geotis 1963; Rinehart and Staggs
1968; Waldvogel and Federer 1976; Dye and Martner
1978; Amburn and Wolf 1997), radar reflectivity data
combined with observations from other sensors (e.g.,
Mather et al. 1976; Foote and Knight 1979; Waldvogel
et al. 1979; Auer 1994; Hardaker and Auer 1994; Billet
et al. 1997; Witt et al. 1998), or dual-wavelength radar

reflectivity data (e.g., Atlas and Ludlum 1961; Eccles
and Atlas 1973; Féral et al. 2003).

Single-radar reflectivity approaches to hail diagnosis
began in the late 1950s and early 1960s when Donald-
son (1959) and Geotis (1963) sought to delineate areas
of rain and hail using low-elevation reflectivity values
exceeding a certain threshold. This technique capital-
izes on the strong dependence of reflectivity on hy-
drometeor diameter and the effects of Mie scattering
for hail-size particles (Dye and Martner 1978; Doviak
and Zrnić 1993). Another reflectivity-centric approach
employs vertically integrated liquid water (VIL) to de-
tect hail (Greene and Clark 1972). Correlations of VIL
with severe weather occurrence, first noted by El-
evander (1977), led to the development of the VIL-
based Weather Surveillance Radar-1988 Doppler
(WSR-88D) severe weather potential (SWP) algorithm
(Kitzmiller et al. 1995) and the use of “VIL of the day”
and “VIL density” [ratio of VIL to echo-top height;
Amburn and Wolf (1997)] by forecasters to assess hail
potential. The limited success of the latter two ap-
proaches is due to variability in VIL values and echo-
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top heights with radar range (Edwards and Thompson
1998; Maddox et al. 1999).

Hail diagnosis using single-radar reflectivity data and
observations from other sensors began in the 1970s
when hail suppression experiments showed a relation
between hail occurrence and the height of the 45-dBZ
contour above the freezing level (Mather et al. 1976;
Foote and Knight 1979; Waldvogel et al. 1979). Inter-
estingly, this result corroborates Donaldson’s (1959)
earlier finding that high-reflectivity values at the upper
levels of storms are related to hail fall at the ground.
The relation of hail at the ground to vertical profiles of
reflectivity, employed by Petrocchi (1982), constitutes
the Next-Generation Weather Radar (NEXRAD) hail
algorithm used by the National Weather Service
(NWS) during the 1980s and 1990s. Later, Witt et al.
(1998) used data presented by Waldvogel et al. (1979)
to develop a simple relation where higher probabilities
of hail correspond with maximum reflectivity values lo-
cated higher above the melting level. This relation is
used in the current NEXRAD hail detection algorithm
(HDA) to forecast the probability of hail of any size.
Because the HDA is cell based, problems with storm
cell detection and tracking can make it difficult to quan-
tify correctly the vertical storm structure. The addition
of vertical temperature profile data makes it necessary
to attain accurate and timely updates, especially in situ-
ations where the environment is evolving rapidly. A
different multisensor approach to hail diagnosis seeks
to discriminate between hail and heavy rain through a
linear regression analysis of single-radar reflectivity
data and infrared cloud-top temperatures from satellite
imagery (e.g., Auer 1994; Hardaker and Auer 1994). A
limitation of this technique is the relatively long update
time of satellite data.

The last conventional hail diagnosis technique re-
viewed in this paper capitalizes on differences in dual-
wavelength signals from hail observed by radars of dif-
ferent wavelength. Atlas and Ludlum (1961) showed
that, due to effects of Mie scattering, the ratio of radar
reflectivities at 10- and 3-cm wavelengths for hail is
much larger than for rain and that such a ratio can be
used for hail detection. Two distinct limitations of this
dual-wavelength technique are the strong attenuation
of radar returns at the shorter wavelength and the need
to match antenna patterns. Although Eccles and Atlas
(1973) successfully address the 3-cm-wavelength at-
tenuation problem by computing the range derivative
of the dual-wavelength power ratio, it is difficult to
utilize their technique operationally because it requires
collocated radar beams at two different radar wave-
lengths. Recently, Féral et al. (2003) proposed a more
operationally viable dual-wavelength approach to hail

detection by using 10- and 5-cm wavelength radars lo-
cated far from each other within France’s radar net-
work. For each storm observed by both radars, Féral et
al. (2003) identify areas where the reflectivity is 40 dBZ
and higher and compute the ratio of average reflectivity
within the storm core (maximum Z – 3 dB) to the av-
erage reflectivity within a 3-km radius of the storm core
(at each radar wavelength). Once spatially correspond-
ing radar bins are identified, Féral et al. (2003) compute
the dual-wavelength reflectivity hail ratio (DWHR).
DWHR is defined as the ratio of the previously com-
puted 10-cm ratio to the 5-cm ratio, multiplied by 100.
Owing to differences in scattering between the two ra-
dars, values of DWHR higher than 100% denote hail.
Because this approach uses radar reflectivity thresholds
to define storm areas of interest, heavy rain may be
misdiagnosed as hail when precipitation is driven by
warm rain processes.

While each hail detection technique described above
has its own limitations, conventional approaches to hail
detection, in general, have common disadvantages com-
pared to polarimetric approaches. Most importantly,
dual-polarization radars measure supplemental radar
variables that characterize the differences between ra-
dar returns at two orthogonal polarizations and, conse-
quently, provide information regarding various micro-
physical properties of scatterers. Using these measure-
ments, polarimetric approaches capitalize on the
differences in shapes and orientations between hail-
stones and raindrops. Because hailstones tend to
tumble and their orientation is more chaotic than that
of raindrops, the differential reflectivity ZDR and spe-
cific differential phase KDP in hail are substantially
lower than in rain with the same radar reflectivity factor
Z. In contrast, linear or circular depolarization ratios
(LDR and CDR, respectively) are higher in hail than in
rain. The reader is referred to the monographs of
Doviak and Zrnić (1993) and Bringi and Chandrasekar
(2001) for definitions of basic polarimetric variables.

The most commonly used polarimetric method for
hail detection utilizes combined measurements of Z at
horizontal polarization and ZDR. In this method, rain
and hail are separated in the Z–ZDR plane by a bound-
ary defined with relations ZDR � f(Z) or Z � g(ZDR)
as specified by Leitao and Watson (1984) and Aydin et
al. (1986). Similar relations Z � y(KDP) were used by
Balakrishnan and Zrnić (1990a), Ryzhkov and Zrnić
(1994), and Smyth et al. (1999) for the delineation of
rain and hail in the Z–KDP plane. Sometimes all three
radar variables, Z, ZDR, and KDP, are involved in the
designation of hail. Because the three radar parameters
are interdependent in rain medium [i.e., they are “con-
sistent” in rain; e.g., Scarchilli et al. (1996)] lack of such
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a consistency may point to the presence of hail (Smyth
et al. 1999; Brandes and Ryzhkov 2004).

LDR was used for identification of hail by Bringi et
al. (1986), Holler et al. (1994), Kennedy et al. (2001),
and Zeng et al. (2001), among others. It is widely ac-
cepted that radar echoes from rain are characterized by
LDRs of less than �25 dB, whereas hail, melting snow-
flakes, and nonmeteorological scatterers may have
much larger LDRs.

Balakrishnan and Zrnić (1990b) suggested using the
cross-correlation coefficient between horizontally and
vertically polarized signals �hv in addition to other po-
larimetric variables to better recognize hail. At 10-cm
wavelength, �hv in rain rarely drops below 0.98. Lower
values of �hv combined with high Z might indicate ei-
ther pure hail or a mixture of hail and rain.

Numerous experimental studies indicate that quite
often rain and hail partially overlap in the Z–ZDR or
Z–KDP planes. Such an overlapping might be exacer-
bated by measurement errors in the radar polarimetric
variables and by biases in Z and ZDR. Biases in Z and
ZDR caused by attenuation and differential attenuation
are difficult to correct in media containing hail. In ad-
dition, specific differential phases are prone to errors
due to the large gradients of the total differential phase
(Ryzhkov and Zrnić 1998) that are commonly observed
in hailstorms. The inherent “fuzziness” of rain–hail
boundaries is more adequately addressed in the frame-
work of a fuzzy logic approach than by deterministic or
“rigid” boundaries. Several fuzzy logic hydrometeor
classifiers based on polarimetric measurements have
become increasingly popular in recent years (Vive-
kanandan et al. 1999; Zrnić and Ryzhkov 1999; Straka
et al. 2000; Liu and Chandrasekar 2000; Zrnić et al.
2001; Keenan 2003; Lim et al. 2005). Hail is one of
several classes of meteorological and nonmeteorologi-
cal scatterers that can be distinguished using fuzzy logic
classification routines.

Because hail diagnosis by polarimetric measurements
is based on the bulk properties of hydrometeors rather
than on reflectivity alone or reflectivity combined with
other data platforms, it is likely that the former method
outperforms the latter methods. Indeed, a recent com-
parison of algorithm performance showed that a sim-
plified version of the National Severe Storms Labora-
tory’s (NSSL’s) fuzzy logic hydrometeor classifier out-
performed the NEXRAD HDA (probability of hail
indicator) during the recent Joint Polarization Experi-
ment (JPOLE; Ryzhkov et al. 2005). To date, this is the
only study in the literature that compares directly the
statistical performance of polarimetric and conven-
tional hail diagnosis algorithms. The importance of

such comparative studies is supported by the antici-
pated polarimetric upgrade of the WSR-88D network.

The purpose of this study is to describe a simplified
version of the NSSL’s fuzzy logic hydrometeor classifi-
cation algorithm (HCA) for rain and hail discrimina-
tion, illustrate diagnostic uses of the HCA, and review
and expand upon hail validation results reported by
Ryzhkov et al. (2005). Polarimetric data for this study
were collected with NSSL’s research and development
WSR-88D radar in Norman, Oklahoma (KOUN here-
after), to which polarimetric diversity was added in
March 2002. The radar can operate in two different
modes. In its simultaneous horizontal and vertical
(SHV) transmission and reception mode, the radar si-
multaneously transmits and receives horizontally (H)
and vertically (V) polarized waves. The following vari-
ables are measured in the SHV mode: radar reflectivity
factor Z at horizontal polarization, Doppler velocity V,
spectral width ��, differential reflectivity ZDR, differen-
tial phase �DP, and the magnitude of the cross-
correlation coefficient �hv between two copolar compo-
nents of the radar signal. In the linear depolarization
ratio (LDR) mode, only horizontally polarized radia-
tion is transmitted but both copolar and cross-polar
components of the radar return are received. Hence,
LDR can be estimated in the LDR mode at the expense
of ZDR and �hv. During data collection, the KOUN
radar was operated mostly in the SHV mode and thus
LDR was not available. Therefore, an additional objec-
tive of this study is to evaluate the quality of polarimet-
ric hail detection in the absence of LDR.

2. Algorithm description

Among several polarimetric classification routines
used at NSSL (Ryzhkov et al. 2005), we selected a sim-
plified version of a fuzzy logic classifier tailored for hail
detection from the data collected mostly at the lowest
PPI scan during the JPOLE Intense Operation Period
(IOP) in April–June 2003. The algorithm distinguishes
between echoes caused by 1) ground clutter/anomalous
propagation (AP), 2) biological scatterers (insects,
birds, and bats), 3) “big drops” (rain with drop spectra
characterized by the presence of big drops and a deficit
of small drops), 4) light rain, 5) moderate rain, 6) heavy
rain, and 7) rain mixed with hail. The median volume
drop diameter for rain with big drops typically exceeds
2.5 mm. Most of light rain is characterized by rain rates
lower than 5 mm h�1, moderate rain has rates between
5 and 30 mm h�1, and rates exceeding 30 mm h�1 are
common for heavy rain. The structure of the algorithm
and choice of classes were dictated by the conditions
and timing of the validation experiment. Because only
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data from the lowest elevation scan were used for com-
parison with ground truth and observations were lim-
ited to within 150 km of the radar, none of the snow
categories or graupel were included in the list of classes.

Four radar variables, Z, ZDR, �hv, and the “reflectiv-
ity texture” SD(Z), are used for classification. The pa-
rameter SD(Z) characterizes the magnitude of small-
scale fluctuations of Z along the radar ray. To obtain
SD(Z), we average Z data (sampled every 0.267 km)
along the radial, using a 1-km running average, and
subtract the smoothed estimates of Z from their origi-
nal values. Because SD(Z) is much higher for nonme-
teorological radar echoes than for echoes associated
with hydrometeors, this parameter is very useful for
distinguishing between ground clutter (GC)/AP and
hail echoes that may have very similar Z, ZDR, and
�hv values. In other versions of the NSSL fuzzy classi-
fier, the texture parameter of the differential phase
[SD(�DP)] is utilized together with SD(Z) (Ryzhkov et
al. 2005). However, we prefer not to use the standard
deviation of �DP in hail-bearing storms because it in-
creases rapidly as the cross-correlation coefficient �hv

drops due to hail presence and/or nonuniform beam
filling (NBF), which is very common in this type of
storm. Hence, it can confuse the classification algorithm
by producing false designations of clutter/noise within
the storm.

Some hydrometeor classification algorithms reported
in the literature (e.g., Zrnić et al. 2001; Keenan 2003;
Lim et al. 2005) utilize specific values for the differen-
tial phase KDP and temperature as input variables. In
our validation study, hail identification is performed
below freezing level and temperature information is not
crucial.

As far as KDP is concerned, its high-resolution esti-
mation in localized severe storms may suffer from extra
noisiness caused by the low magnitudes of �hv in hail
and from biases due to NBF as shown in the study by
Ryzhkov (2005). We believe that any quantitative use
of KDP (either for hail detection or rainfall estimation)
should be preceded by an evaluation of the NBF-
related perturbations of the radial profiles of �DP using
the estimates of the cross-beam gradients of �DP and Z
according to Ryzhkov (2005). In the areas where such
perturbations are too high, the estimates of KDP are not
reliable. Given this reasoning and for the sake of sim-
plicity, we do not utilize KDP in this study.

The seven classes are described by 28 one-
dimensional membership functions P(i)(Yj) that charac-
terize the distribution of a radar parameter Yj [e.g., Z,
ZDR, �hv, SD(Z)] for the ith class. It is assumed that
one-dimensional membership functions have an asym-

metric trapezoidal shape with a maximal value of one
and a minimal value of zero (Fig. 1). These trapezoidal
functions are described by four parameters: X1, X2, X3,
and X4, as shown in Fig. 1. Before these functions are
applied to the data, Z and ZDR are corrected for at-
tenuation and differential attenuation (Bringi et al.
1990), and the measured radar variables, which are ob-
tained from a polar grid, are estimated on a Cartesian
grid by averaging values within 1 km � 1 km grid cells.

An aggregation value for each class of radar echo is
defined as

Qi � �
j�1

M

WjP
	i
�Yj���

j�1

M

Wj, 	1


where Wj is a weight between 0 and 1 assigned to the jth
variable and M � 4 is the number of variables. The type
of radar echo is identified by the maximal aggregation
value.

The parameters X1–X4 describing 28 one-
dimensional membership functions for seven classes are
presented in Table 1. In Table 1, fl, fh, and fb are func-
tions of the radar reflectivity,

fl	Z
 � �0.50 � 2.50 10�3Z � 7.50 � 10�4Z2, 	2


fh	Z
 � 0.08 � 3.64 10�2Z � 3.57 � 10�4Z2, and

	3


fb	Z
 � �0.20 � 0.108Z � 6.43 � 10�4Z2, 	4


where Z is expressed in dBZ. Equal weights are cur-
rently given to all four radar variables in Eq. (1). Zero
weights can be given to any variable that is not useful
for classification. The class with the highest aggregation
score is designated as the most likely scatterer type. If
at any given location GC/AP is identified as the most
likely source of the radar echo and the absolute value of
the mean Doppler velocity V is larger than 1 m s�1,
then the designation is made for a class with the second-

FIG. 1. Trapezoidal membership function.
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highest aggregation score. This helps to prevent the
misclassification of ground clutter/AP as hail. The pa-
rameters X1–X4 in Table 1 were obtained by using vari-
ous thresholds published in the literature (see a review
by Straka et al. 2000) or by examining histograms and
scatterplots of the measured radar variables within the
areas with a priori known sources of radar echo.

As shown in Table 1, the fuzzy logic approach allows
the four rain categories (BD, LR, MR, and HR) to
overlap each other and to overlap with hail possibly
mixed with rain (RH), in terms of all four radar vari-
ables. A boundary separating areas of rain and hail in
the Z–ZDR plane [where P(ZDR) is equal to 1 for rain
and hail, respectively] is defined by the dependence
ZDR � fl(Z) from Eq. (2). Figure 2 illustrates the po-
sition of this demarcation line with respect to the ones
determined by functions Z � g(ZDR) as determined by
Leitao and Watson (1984),

Z � �4ZDR
2 � 19ZDR � 37.5 if 0 � ZDR � 2.5dB

Z � 60 if 2.5 � Z � 4.0dB, 	5


and Aydin et al. (1986),

Z � 27 if ZDR � 0dB
Z � 19ZDR � 27 if 0 � ZDR � 1.74dB
Z � 60 if ZDR � 1.74dB. 	6


In (5) and (6), Z is expressed in dBZ and ZDR is ex-
pressed in dB. The Z–ZDR boundary used in our clas-
sification algorithm (marked as line 3 in Fig. 2) is
shifted slightly upward with respect to line 2 [corre-
sponding to Eq. (6)] and is significantly different from

TABLE 1. Parameters of membership functions for the following seven classes: ground clutter and anomalous propagation (GC/AP),
biological scatterers (BS), big drops (BD), light rain (LR), moderate rain (MR), heavy rain (HR), and rain mixed with hail (RH).

P(Z )

GC/AP BS BD LR MR HR RH

X1 (dB) 15 5 15 5 30 40 45
X2 (dB) 20 10 20 10 35 45 50
X3 (dB) 70 20 45 35 45 55 75
X4 (dB) 80 30 50 40 50 60 80

P(ZDR)

GC/AP BS BD LR MR HR RH

X1 (dB) �4 0 fh(Z ) � 0.3 fl(Z ) � 0.3 fl(Z ) � 0.3 fl(Z ) � 0.3 �0.3
X2 (dB) �2 2 fh(Z ) fl(Z ) fl(Z ) fl(Z ) 0.0
X3 (dB) 1 10 fb(Z ) fh(Z ) fh(Z ) fh(Z ) fl(Z )
X4 (dB) 2 12 fb(Z ) � 1.0 fh(Z ) � 0.3 fh(Z ) � 0.3 fh(Z ) � 0.3 fl(Z ) � 0.3

P(�hv)

GC/AP BS BD LR MR HR RH

X1 0.5 0.3 0.94 0.95 0.95 0.95 0.85
X2 0.6 0.5 0.97 0.98 0.98 0.98 0.97
X3 0.9 0.8 1.0 1.0 1.0 1.0 1.0
X4 0.95 0.83 1.01 1.01 1.01 1.01 1.01

P[SD(Z )]

GC/AP BS BD LR MR HR RH

X1 (dB) 2 1 0 0 0 0 0
X2 (dB) 4 2 0.5 0.5 0.5 0.5 0.5
X3 (dB) 10 4 3 3 3 3 3
X4 (dB) 15 7 6 6 6 6 6

FIG. 2. Boundaries between rain and hail in the Z–ZDR plane
used by Leitao and Watson (1984) (curve 1), Aydin et al. (1986)
(curve 2), and in the NSSL’s fuzzy logic classification algorithm
(curve 3). Dashed lines encompass the area for P(ZDR) where hail
and rain overlap according to the fuzzy logic algorithm.
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line 1 [determined by Eq. (5)]. Note that for P(ZDR) the
fuzzy logic classification routine allows for overlapping
of rain and hail Z–ZDR pairs within the “fuzzy” bound-
ary stretching 0.6 dB along the ZDR axis between the
dashed lines in Fig. 2, whereas curves 1 and 2 depict
deterministic boundaries.

3. Data collection

The polarimetric radar data used to illustrate the di-
agnostic capability of the HCA or to validate its per-
formance (Ryzhkov et al. 2005) were collected mostly
during JPOLE. During the course of this experiment
(28 April 2003–13 June 2003), two vehicles intercepted
thunderstorm cores that had the potential to produce
hail at the surface. While meteorologists noted rainfall
and hail fall characteristics within storm cores, a global
positioning system recorded vehicle position. Storms
intercepted included an isolated low-precipitation (LP)
supercell storm (Bluestein and Parks 1983) on 1 May, a
classic supercell storm on 19 May, two linearly aligned
LP supercell storms on 11 June, and lines of convective
storm cells on 14 May and 10 June, all within 150 km of
KOUN (Table 2). The ensuing dataset included 47 re-
ports of rain intensity (N � 14) and hail size (N � 33),
with hail diameters ranging from 0.5 to 4.5 cm (Table
2). These data were used for comparative validation of
the NEXRAD HDA (Witt et al. 1998) and the fuzzy
logic polarimetric classifier described in the previous
section. This validation dataset excluded 11 June 2003
because data from the conventional radar at Norman/
Twin Lakes, Oklahoma (KTLX), used to validate the
NEXRAD HDA (Ryzhkov 2005), were not recorded.
Other polarimetric radar cases examined in this study
include a developing supercell on 8 May 2003 and an
isolated severe storm on 1 July 2004. We use the latter
cases, and the 19 May 2003 supercell, to illustrate the
diagnostic capability of the HCA.

4. Diagnostic capability

To be an operationally viable algorithm, the HCA
must be able to diagnose regions of severe hail (with

hailstone diameter larger than 1.9 cm) within a thun-
derstorm. Another desirable capability is the diagnosis
of polarimetric signatures indicative of hail at any radar
elevation within a storm, under a variety of environ-
mental conditions. These capabilities are illustrated by
polarimetric signatures and HCA output for a supercell
that produced 2.5-cm hail (19 May 2003), a developing
supercell with hail aloft (8 May 2003), and a severe
storm embedded in AP (1 July 2004). The latter event
emphasizes the HCA’s capability to distinguish be-
tween meteorological and nonmeteorological echoes.

Figure 3 illustrates the diagnosis of regions of severe
hail within the 19 May 2003 supercell, which produced
hail of 0.5–4.5-cm size. At 2330 UTC, the 2.5-cm hail
reported on the ground at a location of approximately
X � �45.5 km and Y � �82 km was associated with Z
of 55 dBZ, ZDR of 0.8 dB, and �hv of 0.92 at 0.5° eleva-
tion [�1.2 km above radar height (ARH); Figs. 3a–c,
respectively]. When these values are run through the
HCA, the target is classified as a rain–hail mixture (Fig.
3d).

Besides classifying hail at the lowest elevation, the
HCA is capable of tracking the development of hail
aloft and assessing the potential for hailfall at the
ground—especially for storms located within about 120
km of the radar. In Fig. 4, this situation is illustrated for
a developing storm on 8 May 2003 (at �2115 UTC) that
later evolved into a tornadic supercell. While polari-
metric signatures within the broad storm core at 0.5°
elevation (�0.6 km ARH) are characterized by a rela-
tively weak reflectivity core (40–50 dBZ; Fig. 4a), mod-
erate ZDR (2–3 dB; Fig. 4c), and relatively high �hv

(�0.97; Fig. 4e) indicative of rain (Fig. 4g), polarimetric
signatures within the more compact storm core (X �
�45 km and Y � �4 km) at 3.5° elevation (�2.9 km
ARH) are characterized by high reflectivity (�60 dBZ;
Fig. 4b), relatively low ZDR (0.5–1.0 dB; Fig. 4d), and a
nearby minima in �hv (0.9–0.95; Fig. 4f) indicative of
hail (Fig. 4h). About 25 min later, Storm Data (NCDC
2003) reported 2.2-cm hail falling from this storm.

In addition to detecting regions of rain and hail, the
HCA detects regions of nonmeteorological echo: bio-
logical scatterers (BS) and GC/AP. Owing to the simi-
larity of reflectivity characteristics among storms and
GC/AP, this capability is particularly important when
severe storms develop within a region of GC/AP. This
situation arose on the morning of 1 July 2004 (1425
UTC) as a hail-producing storm located between 60–80
km west and 0–10 km south of KOUN became embed-
ded in AP (Fig. 5). Near that time (1200 UTC), vertical
profiles of temperature and humidity (estimated from a
sounding taken at Norman, Oklahoma) were favorable
for the superrefraction of the radar beam (not shown).

TABLE 2. Storm intercept data used in the statistical evaluation
including the date, storm type, radar range, range of observed hail
sizes, and number of observations. Here, LP denotes low
precipitation.

Date Type Range (km) Hail size (cm) No.

1 May 2003 LP supercell 120–140 0.64–4.5 7
14 May 2003 Multicells 40–60 0.50–0.65 8
19 May 2003 Supercells 30–50 0.50–4.50 21

80–100
10 Jun 2003 Multicells 30–50 0.50–0.88 11

110–130
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Because reflectivity values within this region are quite
high (�55 dBZ), especially just east of the aforemen-
tioned cell, differentiating regions of rain and hail from
regions of AP is difficult (Fig. 5a). As AP is essentially
stationary (radial velocity �0.0 m s�1) and has robust
polarimetric signatures—near-zero or negative ZDR

(Fig. 5b) and particularly low �hv (0.7–0.9; Fig. 5c)—the
HCA can correctly identify most areas that have po-
larimetric signals that are consistent with AP and rain.
In this case, the HCA also identifies areas with polari-
metric signals consistent with hail. One of these hail
areas was associated with 2.5-cm (1 in.) hail reported at
X � �75 km and Y � �5 km by Storm Data (NCDC
2004; Fig. 5d).

5. Validation of the HCA

The three cases described above illustrate the HCA’s
capability to diagnose polarimetric signatures indicative
of severe hail at various radar elevations within a storm,

under a variety of environmental conditions. Another
desirable attribute of the HCA is high statistical accu-
racy and skill. In an overview paper on JPOLE, Ryzh-
kov et al. (2005) report that the HCA not only verified
well against hail reports attained during JPOLE, but
attained higher accuracy and skill scores than did clas-
sifications based on the NEXRAD HDA’s probability
of hail output. In this section, we provide a more de-
tailed description of the validation methodology and
results presented by Ryzhkov et al. (2005).

To validate hail detection with the conventional
(HDA) and polarimetric (HCA) algorithms, ground
truth data collected during JPOLE (Table 2) were com-
pared with the HDA and HCA output from the lowest
radar elevation (0.5°). The HDA ingested data col-
lected with KTLX, the nearest operational WSR-88D
radar (20 km northeast of KOUN), whereas the HCA
ingested data collected with KOUN. Because the HDA
is a cell-based algorithm, it was necessary to determine
which storm cell was located closest to the ground truth.

FIG. 3. At 0.5° elevation, the (a) Z, (b) ZDR, (c) �hv, and (d) classifications at 2330 UTC on 19 May 2003.
Reflectivity contours overlay each panel. The white plus sign shows the location of 2.5-cm (1.0 in.) hail reported
by the storm intercept team at approximately the same time.
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FIG. 4. At (left) 0.5° and (right) 3.5° elevations for (a), (b) Z, (c), (d) ZDR, (e), (f) �hv, and (g), (h) HCA
classification at 2114 UTC 8 May 2003. Reflectivity contours overlay each panel.
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Each hail report was matched with the storm cell whose
40-dBZ contour was located within the lowest accept-
able distance and occurred within 
6 min of the avail-
able radar data (both KOUN and KTLX). Acceptable
distances varied from 3.2 to 5 km, depending on the
speed of the storm movement. These criteria were used
to consider the affects of storm movement, the possi-
bility that the hail fell outside of the high-reflectivity
core, and the high confidence in our ground truth.

Once each report was matched with a particular
storm, the HDA and HCA output were validated. For
the HDA, probabilities of hail 60% or higher were con-
sidered indicative of hail falling at the ground. Thus,
HDA output was flagged as a hit when a hail probabil-
ity 60% or higher corresponded with a hail report. The
HDA output was flagged as a correct null when a hail
probability less than 60% corresponded with a rain re-
port. Because the HCA classifies hydrometeor type,
HCA output was flagged as a hit when a region classi-
fied as hail was located within the acceptable distance
of the hail report. The HCA output was flagged as a
correct null when a region classified as rain was located
within the acceptable distance of a rain report.

Using this rule base, a 2 � 2 contingency table was
created for each day and all days combined, and was

used to quantify the accuracy and skill of the HCA and
HDA. Within the contingency table (Table 3), a is a
“hit,” b is a “false alarm,” c is a “miss,” and d is a
“correct null” (Wilks 1995). These values are used to
compute the following measures: probability of detec-
tion (POD),

POD �
a

a � c
; 	7


false alarm rate (FAR),

FAR �
b

a � b
; 	8


critical success index (CSI),

CSI �
a

a � b � c
; and 	9


and Heidke skill score (HSS),

HSS �
2	ad � bc


	a � c
	c � d
 � 	a � b
	b � d

. 	10


Measures of accuracy and skill in Table 3b show that
the performance of the HCA and the HDA varies

FIG. 5. The (a) Z, (b) ZDR, (c) �hv, and (d) classifications at 0.5° elevation at 1425 UTC on 1 Jul 2004. The
white plus sign shows the location of 2.5-cm (1.0 in.) hail reported by Storm Data (NCDC 2004) at 1423 UTC.
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among the 4 days. Interestingly, the HDA attains per-
fect scores on 1 May 2003, while the HCA suffers from
a few false alarms and hence, a higher FAR (17%) and
lower CSI and HSS (94% and 88%, respectively; Table
3b). On this day, a chase vehicle intercepted an isolated
LP supercell as it moved eastward from approximately
140 to 130 km west-northwest of KOUN. During this
period (�1 h), the storm produced pea- to marble-size
hail (Table 2) and rain at the ground. A different situ-
ation arose on the morning of 14 May 2003, when the
HCA significantly outperforms the HDA (Table 3b). In
this case, a chase vehicle intercepted a storm that pro-
duced very small hail (0.5–0.6 cm) within a west-to-east-
oriented convective line 50–55 km west of KOUN. Ow-
ing to several misses, the HDA POD, CSI, and HSS are
low compared to the corresponding HCA values (Table
3b).

On 19 May 2003, chase vehicles intercepted a classic
supercell located about 90 km south of KOUN that
dropped up to 4.5-cm hail (1.75 in.) on the ground. This
supercell produced hail cyclically over several hours as
it moved eastward. Although the HCA had only one
false alarm, the HDA had several, which resulted in a
higher FAR (26% versus 0.1%) and a lower HSS (13%
versus 88%; Table 3b). The 10 June event was similar to
the 14 May 2003 in that storm cells formed a convective
line and produced relatively small size hail (0.5–0.9 cm).
Like that event, the HCA achieved perfect perfor-
mance. In contrast, the HDA produced several false
alarms that resulted in a high FAR (63%) and low CSI
and HSS (37% and 19%, respectively; Table 3).

In terms of overall accuracy and skill, the HCA out-
performs the HDA. Comparison of these statistical

measures suggests that the NEXRAD HDA suffers
more false alarms (39.5% versus 11.5%) and more
misses (88% versus 100%) than the HCA. As a result,
the NEXRAD HDA also has a substantially lower CSI
(56% versus 89%) and HSS (31% versus 80%). A ques-
tion arising from these results, and unexplored in Ryzh-
kov et al. (2005), is whether these differences in per-
formance are statistically significant.

To test the statistical significance, we bootstrapped
values composing the contingency table and compared
the resulting distributions (Wilks 1995). Bootstrapping
is a nonparametric technique where contingency table
data associated with each algorithm are resampled with
replacements (5000 times) and the statistics are recom-
puted to yield a distribution of each statistic (i.e., POD,
FAR, CSI, and HSS). The resulting distributions indi-
cate the accuracy of each statistic given the available
data. Statistical significance is determined by compar-
ing the 90th and 95th percentiles; an absence of over-
lapping values indicates statistical significance at the
90% and 95% confidence levels, respectively. A com-
parison of these statistical distributions indicates that
only the POD and CSI statistics are statistically signifi-
cant at both confidence levels. However, FAR and HSS
are statistically different at the 90% confidence level.
While the superior performance of NSSL’s classifier,
compared to the HDA, demonstrates a statistical ad-
vantage of using polarimetric variables to discriminate
hail from rain, that advantage is tempered by the
dataset’s relatively small size and limited geographic
coverage. Furthermore, this statistical comparison did
not consider hail size estimation or predictability. The
planned polarimetric upgrade of the WSR-88D net-
work will provide the opportunity to evaluate polari-
metric and conventional hail classification algorithms in
a more complete manner.

Regardless of these limitations, this study shows that
high performance can be achieved without LDR. This
assertion is supported by a recent study showing supe-
rior hail diagnosis using the hail parameter (HDR) and
the hail quadrature parameter (HQP), as compared to
LDR (Depue and Rutledge 2003). The work of Depue
and Rutledge is the only other study that validates
these statistically polarimetric hail diagnosis tech-
niques. Because their validation dataset was collected
during a different time (summers of 1992 and 1993) and
over a different region (northeastern Colorado), and is
larger than the current dataset, their statistical results
are not directly comparable to ours.

6. Summary

This paper describes one of the versions of the
NSSL’s polarimetric fuzzy logic hydrometeor classifica-

TABLE 3. (a) Example of a 2 � 2 contingency table, where a is
a hit, b is a false alarm, c is a miss, and d is a correct null. (b) The
HCA and HDA accuracy and skill measures.

(a)

Hail obs Hail not obs

Hail detected by the HCA
or HDA

a b

Hail not detected by the
HCA or HAD

c d

(b)

Algorithm, date (2003) POD FAR CSI HSS

HCA, 1 May 100 17 94 88
HDA, 1 May 100 0 100 100
HCA, 14 May 100 0 100 100
HDA, 14 May 60 0 60 53
HCA, 19 May 100 0.1 94 88
HDA, 19 May 93 26 70 13
HCA, 10 Jun 100 0 100 100
HDA, 10 Jun 100 63 37 19
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tion algorithm (HCA) that is tailored for hail detection,
illustrates the HCA’s operational capabilities in terms
of rain and hail discrimination, and presents a compara-
tive validation of hail detection by the HCA and HDA.
The HCA’s capabilities and statistical validation are
demonstrated using polarimetric data collected mostly
during JPOLE (Ryzhkov et al. 2005; Scharfenberg et al.
2005). The paper’s operational focus is motivated by
the upcoming polarimetric upgrade of the WSR-88D
network. Within the HCA, values of four variables Z,
ZDR, �hv, and SD(Z) are used within asymmetric mem-
bership functions to discriminate seven classes. These
seven classes are ground clutter/anomalous propaga-
tion, biological scatterers (insects, birds, and bats), big
drops, light rain, moderate rain, heavy rain, and rain
mixed with hail.

The HCA’s viability as an operational algorithm is
illustrated for three cases. The first case (19 May 2003)
shows the HCA’s capability to detect regions of severe
hail (2.5 cm) within a supercell at 0.5° elevation. The
second case (8 May 2003) demonstrates the classifica-
tion of hail below the melting layer in a developing
storm (3.5° elevation) that later evolved into a tornadic
supercell. The third case (1 July 2004) illustrates the
HCA’s ability to discriminate regions of rain and hail
from regions of surrounding AP.

The HCA and HDA outputs are validated for four
cases collected during JPOLE, including an LP super-
cell (1 May 2003), a classic supercell (19 May 2003), and
two convective lines (14 May and 10 June 2003). Sta-
tistical measures computed from contingency tables
show that the HCA outperforms the HDA. In compari-
son to the HDA, the HCA’s overall higher POD (100%
versus 88%) and lower FAR (11% versus 39%) indi-
cates that the HCA suffers from fewer misses and false
alarms in these cases. As a result, the HCA attains a
higher overall CSI (89% versus 56%) and HSS (80%
versus 31%). Furthermore, bootstrapping the data re-
veals that differences in the distributions of POD and
CSI are statistically significant at the 95% confidence
level, whereas differences in FAR and HSS are statis-
tically significant at the 90% confidence level. These
results indicate that a relatively simple version of the
polarimetric classification algorithm provides signifi-
cantly higher quality of hail detection than a conven-
tional hail detection algorithm currently utilized on
single-polarization WSR-88D radars.
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