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Microphysical Interpretation of Multiparameter Radar Measurements in Rain.
Part III: Interpretation and Measurement of Propagation Differential
Phase Shift between Orthogonal Linear Polarizations
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ABSTRACT

As radar waves having different polarizations propagate through a collection of nonspherical oriented
hydrometeors, a phase differerice between the waves appears. In a collection of uniformly horizontally
oriented quiescent water drops, the rate of change of the propagation differential phase shift with increasing
distance from the radar is proportional to the product of the liquid water content and the departure from
unity of the mass-weighted mean axis ratio of the drops provided the radar wavelength is much larger than
the drops. The appropriateness, however, of such a simple relation to natural rain in which some drops
assume complex shapes and a variety of orientations through the processes of collision, coalescence, break-

up and oscillation remains to be determined.

1. Introduction

The electromagnetic wave backscattered to a radar
from hydrometeors provides information about the
precipitation. At any instant this wave can be specified
by an amplitude and a phase angle. Traditional radar
parameters usually depend only on the amplitude of
the backscattered signals. The natural complexity and
diversity of precipitation, however, requires extracting
as much information as possible from the signals.
Consequently the phase component of the backscat-
tered waves should also be used. ‘

The wave returned to a radar can be decomposed
into a component having the same polarization as
the transmitted wave (co-polarized component) and
another component ‘“oppositely” polarized (cross-
polarized or orthogonally' polarized component). The
relative phase between these two components, which
can be measured by radars capable of receiving the
co- and cross-polarized components simultaneously,
is determined by several factors including the polar-
ization of the transmission, the characteristics of the
backscattering hydrometeors and the nature and ex-
tent of the precipitation encountered during propa-
gation.

As a radar wave passes through a region containing
oriented nonspherical hydrometeors the wave incident

! Mathematically, the transmitted and orthogonally polarized
electric fields can be considered elements of two different complex
vector spaces each spanned by a different unit basis vector such
that the dot product between them is zero. Right- and left-hand
circular polarizations as well as vertical and horizontal linear
polarizations are frequently used orthogonal pairs.
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on scatterers at point P consists of a component due
to the transmitted wave plus another component due
to forward scattering by hydrometeors upstream of P
(van de Hulst, 1957). Because of the different origins
of these two waves, the phase angles of each compo-
nent will be different. When the forward scattered
wave is added to the transmitted wave, the phase
angle of the net electric field vector will differ from
that of the transmitted component alone. This phase
difference may be called the propagation phase shift.

Since the forward scattered component depends
upon the polarization of the transmitted wave, the
propagation phase shift will vary for different polar-
izations. The inequalities between propagation phase
shifts corresponding to different transmission polar-
izations may be called the propagation differential
phase shifts.

Because all elliptical polarizations can be expressed
as a linear combination of vertically and horizontally
linearly polarized components, only the horizontal-
vertical linear polarization pair will be considered
further. Propagation differential phase shift henceforth
will refer exclusively to this polarization couplet.

Propagation differential phase shifts can become
substantial in rain (e.g., Humphries, 1974) and, in
many situations, can dominate the relative phase
between the horizontally and vertically polarized
components of the backscattered wave. Determining
which meteorological quantities significantly influence
the propagation differential phase shift in rain, how-
ever, is not trivial. Within rain, quiescent, horizontally
oriented approximately oblate drops may co-exist
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with others having complex shapes and a variety of
orientations as a consequence of drop collisions,
coalescence, breakup, and oscillation. However, be-
cause so little is known about the impact of these
processes on the shapes and orientations of the drops,
a complete theoretical treatment incorporating all of
this natural complexity can not yet be formulated.
Rain, though, is highly oriented (McCormick et al.,

1972; McCormick and Hendry, 1974; Beard and -

Jameson, 1983; Hendry and Antar, 1984). If a major
fraction of the drops were greatly perturbed, rain
would not exhibit such pervasive orientation. To a
first approximation, therefore, rain can be represented
by a collection of uniformly oriented oblate quiescent
water drops. This simplification has often been used
in theoretical investigations of electromagnetic scat-
tering by rain.

2. Meteorological factors which influence the propa-
gation differential phase shift in rain

For a single particle the relation between the scat-
tered and incident waves may be expressed by a
complex amplitude function (S) which depends on
the particle characteristics and the relative angles of
- the incident wave and viewing angle of an observer
with respect to the particle.

For an ensemble of particles which scatter inde-
pendently of one another and which occupy a region
of incremental length 6R along the direction of a
radar transmission, the two-way propagation induced
phase change of the radar wave which first traverses
and, upon backscattering, returns through the region
of particles is given by (after van de Hulst, 1957),

AP = 26Rk|::]i—72r f Re(So)DNDdD:I , K¢y
where NpdD is the number of drops per unit volume
of diameter D to D + dD. In (1) k is the wave
number (27/\) where X is the radar wavelength, S,
denotes the forward scattered amplitude function
using the convention of Warner and Hizal (1976),
Re denotes the real part of Sy, and the integral is
over the drop size distribution in the volume of the
radar beams having uniform illumination. The one-
way range rate of propagation differential phase shift
between horizontally (H) and vertically (V) polarized
waves over the distance is then given by

2
2y =2 [ (ReSoli ~ Re(Sololi}NodD. ()

For oblate shaped water drops, S, is a function of
the equivalent volume drop diameter and the axis
ratio. The backscatter cross-section (which is propor-
tional to |S,|> where = denotes backscatter) of an
oblate water drop is well described by Rayleigh-Gans
theory for radar wavelengths much larger than the
drops. Under that restriction the influences of size
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and of axis ratio on .S, are separable. Similarly, S,
may be separated. For horizontal and, vertical linear
polarizations, values of S, were computed using a
program provided by C. Warner (personal commu-
nication, 1978) which is based on the method of
Warner and Hizal (1976). At both polarizations S,
was found to bé proportional to D? times a polariza-
tion dependent axis ratio term. More specifically to
a good approximation (correlation coefficient of 0.998;
see Fig. 1) '

Re(So)is — Re(So)y = D’C(1 — 1), 3

where r is the oblate drop axis ratio and C = 0.5987
and 0.05717 at wavelengths of 3.21 and 10.71 cm,
respectively.

From (2) and (3) it follows that

Pyy = 27" f D3C(1 — PNpdD (4a)
108
= — AL - 41, (4b)

where W is the liquid water content in g m™3, X is
the radar wavelength in cm, &4, is the one-way
differential phase shift rate in degrees km™' and 4 is
the mass weighted mean axis ratio defined by

f DBVNDdD

A (5)

f D’NpdD

While the dependence of ®, on the deviation of
drop axis ratio from unity is not surprising, the origin
of the dependence on W is less obvious. Recalling
that for a single drop S, is proportional to D? times
a shape term, then for an ensemble of oblate water
drops it is easy to show that the magnitude of the
forward scattered wave (|E;|y,y) is proportional to W
times a mean shape factor which will be different for
horizontal and vertical polarizations. If W is increased
by a factor F, |E/|y and |E/|y both increase by the
same factor but |Ef|y will always be greater than
|Ef|y because of the difference between the mean
shape terms. Consequently an increase by F in the
forward scattered component which is then added to
the transmitted wave produces a greater increase in
the propagation phase shift ¢y than in ¢,. Hence,
over an incremental distance 6R; ®yy also increases
with increasing W.

For oblate quiescent water drops, (4b) suggests that
if ¢y and 51 were known then W could be determined
without any assumptions about the form or size limits
of the drop size distribution provided S, which is
defined mathematically by (5), is physically real. [For
a bimodal drop shape distribution, for example, A
may be calculated using (5), but none of the drops
may actually possess an axis ratio equal to 5. In that
case 51 would have no physical meaning.] In the next
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FIG. 1. Linear fit of {Re(So)y — Re(Sp)y} normalized by D? to raindrop axis ratio at 10.71 cm (a) and 3.21 cm (b) radar wavelengths
for drops 0.15-0.6 cm diameter and r ranging from unity to the equilibrium value (Pruppacher and Pitter, 1971) appropriate to each

drop size.

two sections methods for estimating both S and &4,
are discussed. :

3. Estimation of Sl from polarization measurements

Although conventional polarization measurements
can be used to estimate the reflectivity weighted mean
axis ratio () (Jameson, 1983a), such measurements
do not yield a direct measure of 5. For many size
distributions of quiescent, horizontally oriented drops,
however, S is closely related to R and the standard
deviation (¢5) of the axis ratio distribution.

This relationship can be made more explicit using
a generalized form of drop size distributions. From
an analysis of drop size distributions observed in a
wide variety of meteorological conditions Ulbrich
(1983) proposed the following general formula:

NpdD = NyD"e™APdD, (6)

where —2 < n < 3 corresponds to different particular
forms of distributions (e.g., exponential, gamma, etc.).
If in a distribution drop sizes are considered to extend
from O to oo (infinite distributions) then direct inte-
gration of (6) for the reflectivity weighted (approxi-
mately D% mean drop diameter D, the variance of
5@(61)2), and the mass weighted mean drop diameter
D are given by

J‘oo N, 7+ne—ADdD
0

+7
D =" -, (7)
f N0D6+n€_ADdD
0
fw N 8+ne—ADdD
+7
0,1)2 = 000 — $2 = nAZ R (8)
f NOD6+ne—-ADdD :
0
© N, 4+ne—ADdD
b= J;) oD _nt4 ©)
A

f N0D3+ne—ADdD
0

Observations of rain drops near the ground and of
water drops in wind tunnels suggest that to a good
approximation the relation between drop diameter
and axis ratio is approximately linear, ie., r = a
— bD (Jameson, 1983b). Using this relationship, (8)
can be rewritten as
2
o2 = 20T
A

(10)
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It is also true theri that

A-R=uD-D) (11a)

3 .
| = bK . (11b)

From (10) and (11b) it follows that
=R+ Foz®, (12)

where F = 3/(n + 7)*° and oo denotes an infinite
distribution. For the exponential (n = 0) and gamma
(n = 1-3) drop size distributions, for example, F is
1.13 and 1.06-0.95, respectively.

The assumption of an infinite drop size distribution,
however, is of limited value since through the physical
processes of drop breakup, size sorting due to wind
shear and the differential fall speeds of different sized
drops many natural drop distributions will often be
truncated. To account for truncation it should be
noted that when the limits of integration in (7)-(9)
“are replaced by the maximum (D,,,,) and minimum
(Dmin) drop diameters then

(13)

_f;,7 (n + 7)
o=t
Jns ’ _
2 _ [ Jusn + 8)! fﬂ :l
i [fna(’l o gt / A a8
- _f;,4 (n + 4)
D=
f”3 (15)

where f,,, is the incomplete gamma function appro-
priate for D™ and is defined by

Dmax
f Dn+m e—AD d D

Jom = (16)

f D™me=AldpD
o N

The integer n is identical to that in (6). As in the
derivation of (12) it follows that

A-R
= Fon® n(fusSur — Jnatns) + s Srr — Afnatrs
R 3falnfrsfrs — £20) + 8fuahhs — T 31°S°
17
or in terms of o5 of the truncated distribution
A = R = oxFfusln(fus fos — faans) .
+ Uz for — nafrel/3. (18)

For an ensemble of quiescent horizontally oriented
oblate drops R can be determined (Jameson, 1983a)
from measurements of the differential reflectivity
(Seliga and Bringi, 1976) while o% can be déduced
(Jameson, 1983a) using ‘pseudo-circular’ parameters
derivable from linear polarization measurements in
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which the effects of propagation differential phase
shift have been eliminated (Jameson and Mueller,
1985) The quantities n, F, fu3, fua, Jre» fu1» however
remain unknown.

The variability these unknowns introduce into the
estimation of I from R and s can be investigated
numerically. Calculations were made for Gaussian-
like, gamma, and exponential distributions with A
from 0.1 to 40 cm™ (cm™2 for the Gaussian distri-
bution). The D,,, was varied from 0.1 to 0.6 cm
while D,,;, was varied from 0.01 to D,,,,.

The values of I — & as a function of ¢4 for these
drop size distributions are contained within the shaded
area in Fig. 2. The frequencies of occurrence for all
the drop distributions were equal. The solid line in
Fig. 2a is a least square error power law fit given by

- R = 5.13365"% (19)

with a correlation coefficient of 0.89. Although the
scatter about (19) can approach +0.022 the root-
mean-square deviation is only 0.006. Nearly 90% of
all the model drop size distribution values lie within
+0.01 of (19).

Much of the scatter apparent in F1g 2ais produced
by drop size distributions with a minimum diameter
in excess of 0.1 cm. Because of the large volumes
(10%-10°m?) usually sampled by radar, it may often
be reasonable to assume that the minimum diameter
<0.1 cm. Under this restriction the scatter is signifi-
cantly reduced (Fig. 2b). This -is reflected by an
increase in the correlation coeflicient to 0.95 for the
fit given by

A - R =194905"""2 (20)

The root-mean-square deviation from (20) is 0.004.
Although the maximum scatter is +0.016, 90% of all
values lie within £0.007 of (20). :

4. Estimating the propagation differential phase shift
at linear polarizations

In order to estimate &y it is necessary, of course,
to measure the propagation phase shifts at both
horizontal and vertical polarizations as functions of
radar range, Meteorological radars usually transmit
periodic bursts of energy. During the interval between
bursts while the radar measures backscattered waves
the scatterers move relative to each other and the
radar. Consequently measurements of the phase show
considerable variation during a sequence of pulses.
Although this time variation in the phase ultimately
leads to estimates of important quantities such as the
mean Doppler velocity, the effect of particle motion
must be taken into account before estimating ¢y
and ¢y. '

Although the wave backscattered to the radar from
hydrometeors usually consists'of a‘horizontally and
a vertically polarized component, many radars receive
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FiG. 2. The difference between the mass-weighted mean axis ratio 5 and the reflectivity-weighted mean axis ratio R vs the
standard deviation of the axis ratio distribution for (a) the minimum drop diameter (D) between 0.01 to 0.6 cm and for (b)
Dyin < 0.1 cm. These results apply to quiescent drops for sevéral different types of drop size distributions. The shaded region
encloses all computed values. Most values lie much closer to the best fit solid lines than implied by the shading (see text).

only one (the co-polarized) component at a time.
The polarization of the transmission and receiver are
then switched to gather measurements at the orthog-
onal co-polarization. If the sequence of measurements
is made properly the effect of particle motion on the
phases measured at the different times can be re-
moved, and ¢y — ¢ can then be estimated (Jameson
and Mueller, 1985).

Alternatively, if a radar is equipped to measure
simultaneously both the co- and cross-polarized com-
ponents, particle motion no longer affects the relative
phase between the two signals. In this section it will
be shown that, in principle, ¢ — ¢, can then be
readily estimated.

A cross-polarized signal, however, will only be
produced when the hydrometeors are asymmetric or
~are symmetric but canted. The wave backscattered
from a collection of uniformly horizontally oriented,
quiescent drops would be purely co-polarized so that
the method of Jameson and Mueller for example,
would have to be used to measure ¢y — ¢y. On the
other hand in rain, collisions (e.g., Johnson and

Beard, 1984) will often produce some asymmetric
drops and some canted symmetric drops. The resulting
cross-polarized component originating from these
drops can be measured in rain and appears to be
about 30 dB below the intensity of the .co-polarized
component (Hendry and Antar, 1984). It is worth-
while, therefore, to pursue the estimation of ¢y — ¢y
using simultaneous measurements of the co- and
cross-polarized signals even in a highly oriented me-
dium such as rain.

Suppose a radar alternately transmits horizontally
and vertically polarized signals every millisecond and
simultaneously receives the co- and cross-polarized
signals. Following a transmission at horlzontal polar-
ization, the signals are given by

Eyy = 2 |Sal’ explj(y; + 8n + 26591

Env =>Z ISl explj(y: + 8y + o5’ + &)

(21a)
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while after a vertically polarized transmission

Eyy = E ISyl explj(yi + 81y + 2¢4)]

Eyy = E |Svad’ explj(y; + 8bm + &4 + ox)]

1

(21b)

where Eyy, Eyy, Evy, and Eyy have been normalized
by the transmitted field at the range of the uniformly
illuminated pulse volume, the summation is over the
particles in the pulse volume, j = V=1, and |S,/f
exp| jd;,] are the backscatter matrix elements (Sinclair,
1948) of each particle corresponding to the polariza-
tions of the transmitted (z) and received (r) signals.
The propagation phase shifts (¢, ¢;/) as well as the
random phase positions (v;) are functions of R;, the
distance between a scatterer and the radar. In partic-
ular v; = 47R;/\ where X is the radar wavelength.
Using (21) two products can be formed, i.e.,

ExwE¥y= 2 Z NN CXD{I'I:(%JV — 8 + &

i

4
—ou (R~ R,)]} , (22a)
EvuEYy = 2 2 ISVHHSVVV exD{i[ I;/H - 61VV
i

. 4
+ ot — ¢ + 7” (R — R,)]} , (22b)

. where the asterisk denotes complex conjugate. Since
particle position is independent of the physical prop-
erties of the scatterers it is appropriate to take the
ensemble average over R. Remembering that ¢4 and
¢y are functions of radar range, the ensemble averages
of (22) become _ :

I<E;1VE;‘1H> ~ eXp[j((f’l{ - ¢n)] E _|SHV{i|SHH|i

X expl[ (kv — dhm)), (23a)
<EVHE$V> ~ exp[j(dn — ¢)] 2 ISyl 1Sl
X explj(8yy — 8%¥)], (23b)

where it has been assumed that the depth of the
sampling volume is sufficiently small so that (¢z
— ¢,/) are narrowly distributed about (¢ — ¢y) at
the center of the sampling volume, and that +; and
4, are distributed uniformly over 2.

A useful simplification of (23) is possible. For
Rayleigh-Gans scatterers 8z, 6yy, 6uy, and 6y are
small and
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Z ISl |Sunl’ exp{ j (kv — Sum)}

~ Z IS |Sunl’{1 + j &y — um)} (242)

~ {1 +j@av — oum)} T |SukSual’  (24b)

~ exp{j@av = )} Z 1Sul1Sunl’,  (240)

»yhere, for ‘example, t_he overbar denotes averaging -

e 3 1Sk Skl

P ____ 25
" S S Sl @)

Expression (23) then becomes
(EnvEtuy ~ explj(bv — du + Sy — oum)]
X 2 1Sul|Sunl’  (26a)

(EvuEYv) ~ explj(¢u — ¢v + Sy — o)
X 2 |SvalISwl.  (26b)

[Actually (26) applies to non-Rayleigh-Gans scatterers
as well but the physical interpretation of terms like
d,4v is not as direct as in (25).] Under the usual
assumption of ergodicity (26) can be evaluated from
a time series provided the distributions of |:S],, exp[jé,]

-do not change substantially during the observation

interval.
The ratio of the quantities in (26) then becomes
<E veE ,l.‘/V> . ‘ —
= = - +4
(EmEbm) .CXP{J[2(¢H o) + ovy
2 ISyl 1Sy’
— By — By — ]} X e (27
SRR e ST o R
and |
arg(p) = 2(én — ¢) + A4, (28)

where A = 6HH - 6VV since 6VH ~ 5HV- [From the
reciprocity theorem for scattered waves (e.g., Saxon,
1955) 8% = 8%y identically. The approximate equality
for the mean values in this instance arises from slight
difference in the weighting factors when computing -
the means.] Often after only a rather short penetration
into rain, 2(¢y — ¢y) > A since A will be small for
Rayleigh-Gans scatterers. As a consequence the prop-
agation differential phase shift may be estimated from

(61— #9) ~ 5 arg(w) (29)
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5. Estimation of ®;,

The range rate of change of ®; — ®, must be
estimated from measurements of the propagation
differential phase shift at different locations along the
direction of transmission. For discussion consider
noise-free measurements made at range R, and at a
second range R, = R; + AR. Then

arg(u) — arg(uy)

=2[(¢y — dv)2 — (P — O] + A2 — Ay, (30)

where the subscripts denote the two locations. The
average range rate of differential phase shift over R
is then estimated to be

Ay — A }
2{(dn — dv)2 — (W — S0}’

where @7}, denotes the expected value and ®Y, is the
true mean value. Obviously &%, approaches ®,; the
smaller A, — A, is with respect to the denominator
which is simply the two-way total propagation differ-
ential phase shift over AR (Fig. 3). The limits of
+0.2° in Fig. 3 correspond to the extrema of A,
— A, that can be expected for horizontally oriented
oblate water drops (see Jameson and Mueller, 1985)
observed at a wavelength of 10.71 c¢cm. Expression
(31) of course represents an upper limit to the accuracy

o7, = @;,,,{1 + 31)

1.5 T T T T T T T
141 -
1.3H -
1.2 ~
+0.20 degrees
. v +0.10 7]
"o 40,05~
10
\> -0,06
E T
® o9l -0:10 .
0.8 -0.20 .
0.7 i
0.6 ~
0.5 i 1 i | | 1 i .
0 1 2 3 a4 5 6 7 8

TWO-WAY TOTAL (¢H— ¢v) , degrees

FIG. 3. The ratio of expected ($7;) to the true (®},) rate of
differential phase shift for A, — A, between +0.2° as a function of
total two-way differential phase shift over range increment AR.
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to which ®, can be determined since actual mea-
surements would be affected by other factors such as
system noise. .

6. Discussion

For an ensemble of horizontally oriented quiescent
oblate water drops, it has been shown (4b) that the
range rate of propagation differential phase shift
between horizontally and vertically polarized trans-
mitted waves (®yy) is proportional to the liquid water
content (W) times a shape factor (1 — 5I) where S is
the mass weighted mean axis ratio over the drop size
distribution. Methods for estimating 5 and ®4, have
also been presented.

Although the intent of this paper is only to identify
some of the meteorological factors which influence
propagation differential phase shift, the obvious po-
tential for estimating W warrants some discussion.
The applicability of (4b) to natural rain will depend
on the adequacy of the simple model of rain exployed
in the derivation. Strictly speaking the simple model
is incorrect since almost all raindrop distributions
will have some number of drops actively involved in
the processes of collision, coalescence, and break-up.
The question is not whether this active component
exists but rather under what conditions the subsequent
shapes, canting and possible oscillations of these
drops will confound an interpretation of measure-
ments based on (4b). Since so little is known quan-
titatively either about the proportion of the total
number of drops involved in the various processes or
of the resulting shapes and orientations of the active
drops it seems likely that any potential application of
(4b) will have to be evaluated experimentally in a
variety of meteorological conditions. The relationship,
however, does provide a convenient tool for at least
some preliminary numerical simulations of propaga-
tion differential phase shift at long wavelengths in
rain without having to refer to the complex scattering
amplitude functions.
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